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1

testing time low and specifically to keep test lengths below the 20-item
mark, and preferably within the 6 to 12-item range. If this desire is
to be satisfied, and at the same time we are to assure ourselves that
accurate decisions are being made, on the average, then most of the
time there will be a need to bring some further information into the
decision-making process.

There is no difficulty in recognizing that such information exists,
in the background, and is available for use. The difficulty is one
of finding the technology for quantifying this information and
incorporating it into the decision-making process. One of the things
that we know about individualized instructional programs, for example
the University of Pittsburgh's Individually Prescribed Instructional
(IPI) Program, is that students take very short curriculum embedded
tests within each module, and continue to receive instruction until
Such time as there is good reason to believe that they can pass the end
of module posttest. Thus the very nature of the IPI module is such
as to reduce the variability of posttest performance levels, and to
suggest that there is reasonable prior probability that any particular
student will pass the posttest. It is precisely this information
which can and needs to be incorporated in the decision analysis which
has a short criterion-referenced posttest as its direct data input.

These considerations clearly suggest that Bayesian methods which
combine prior (that is, background) information with direct observational
information, may be useful in sharpening IPI decision making. We shall
therefore turn to the technical problems of quantifying this background
information for a Bayesian analysis. If IPI programs were uniformly
administered throughout the country, it would be possible to gather

background information at various locations and thus to construct
data-based prior distributions for adoption at all IPI installations.
Unfortunately, from the decision making point of view, but not
necessarily from the educational point of view, IPI methods are
administered with substantial local flexibility. As a result, data
gathered from one installation may not necessarily be relevant to the
implementation of IPI at another installation.

At a particular IPI installation at which the instructional

process has stabilized and made uniform and where historical records
are available, it will be possible to use standard Bayesian methods
to develop an instructional decision making process. However, as a
fast growing and evolving entity, IPI is finding itself being
modified continuously in current schools and being introduced into
new schools where such background information has not been gathered,
and therefore standard Bayesian techniques cannot be used with any
expectation of guaranteeing high decision-making accuracy. It

therefore becomes necessary to devise and implement new Bayesian
methods that make it possible to simultaneously gather the background
information necessary to provide prior information and at the same
time, gather and integrate the direct information concerning the
performance on each individual student. It is this requirement for
simultaneous data gathering that demanded the development of new and

2
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complex statistical methods, that make it possible to simultaneously
incorporate both direct observations and collateral group information.

A gross statistical methodology for accomplishing this has been
available in embryonic form since the early days of Truman Kelley's
Statistical Methods text (1923). Kelley concerned himself with the
estimation of true score for a group of individuals and showed, by a
standard application of regression theory, that improved estimates of
true score could be obtained through a simultaneous estimation
procedure, based both on the direct observations of the particular
individual and estimates of the group mean and true score variation
across individuals, all made simultaneously. The celebrated Kelley
formula is of a form which estimates each person's true score as a
weighted average -f his observed score, and the mean of the observed
scores throughout the population. Thus, each individual's true score
estimate is regressed from his observed score towards the overall mean
observed score in the population. A specific formula was given by
Kelley which showed the extent to which improvement it estimation
could be accomplished using this technique. In 1956, Charles Stein
used a similar kind of logic to show that in most situations, when a
group of individual parameters are being estimated simultaneously, the
standard estimates, which here correspond to the mean scores for
each of the individuals, are inadmissible in a strict statistical
sense in that there are always available estimates with better mean-
squared error. Stein proposed a class of estimates of a form
remarkably similar to those given by Kelley. In fact they differ from
Kelley's estimates only to the extent that the regression to the mean
is statistically somewhat less than with the Kelley estimates. Stein's

work opened up the whole field of simultaneous estimation, and his
ideas stimulated similar developments from other classical, from
Bayesian, and from empirical Bayesian points of view. From a Bayesian
point of view the first comment on this possibility was made by
Lindley (1962) in the discussion at the Royal Statistical Society of a
second paper by Stein (1962). A paper by Box and Tiao (1968) on the
Bayesian Estimation of Means for the Random Effects Model, provided
a specific Bayesian methodology, though Box and Tiao did not directly
confront the simultaneous estimation problem. Recently this approach

has been taken up in great detail by Lindley and his associates, and
a general formulation has been provided in a paper by Lindley and

Smith (1972). The possibility of application of these methods in
educational research was noted several years earlier by Novick (1970).
Building upon the work of Lindley (1971), Box and Tiao (1968), Stein
(1956, 1962), Kelley (1923), and others, Novick, Lewis, and Jackson
(1973) specialized the Bayesian simultaneous estimation procedure to
the problem of the estimation of proportions in m-units and shortly
after doing this as indicated in that paper, it became clear that
this method might have useful application in the field of criterion-
referenced tests. Stimulated by discussions with Ronald Hambleton,
who was an ALT postdoctoral fellow during the Summer of 1971, a
proposal was forwarded to the Office of Education for the funding of
a project to further develop and tailor these Bayesian methods for
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potential implementation within IPI. In this proposal it was pointed

out that, in theory, these methods could increase the effective-test
length the equivalent of 6 to 25 observations through the use of

collateral information. To put it the other way around, this allows
a reduction in the required test length anywhere from 6 to 25 items

while maintaining the same level of precision.

It was also noted in the proposal that the primary new statistical
development would focus on a shift in strategy from the point estimation
of individual ability levels, or true performance levels, to the
determination of the probability that a particular individual mastery
level is larger than some specified criterion level. From an

educational point of view, this represented a tailoring of the theoxy
to criterion-referenced testing rather than norm-referenced testing.
Statistically, this meant Litcy'yteBaesiananalsisthattheout4ould
not be a joint-point (modal) estimate of abilit scores for students_
but rather for each student the aposteriori determination of the
probability that his mastery score is larger than some specified
criterion level. The strategy as noted in the proposal would be to use
these aposteriori probabilities in a standard Bayesian decision
theoretic context for deciding whether.or not an individual student
should be advanced to the new unit of instruction or retained for

further work in the current module. In the proposal it was suggested
that the simplest reasonable approximation to reality would be to
assume a. threshold loss function which specified zero losses for
correct positive and negative decisions, and losses a and b,
respectively, (a, b > 0), for false positive and false negative
decisions. For the most part this loss structure is assumed throughout
the work on this project though in one'paper we do indicate that this
is only a first approximation to reality, and that other more
reasonable approximations should be considered in future work. We
do expect that procedures developed here, based on Lhreshold loss,
will be a very good and workable first approximations indeed.

In developing our materials for this project we have been
cognizant of the fact that several different kinds of technical
questions would need to be resolved, and that several different kinds
of audiences would need to be addressed in our final report. This has
led us to seek collaboration with persons more experienced in IPI
methods and the preparation of several somewhat overlapping expository
papers, in addition to our technical papers. First let us consider the
technical questions. The primary problem was to work with the Bayesian
simultaneous decision model for the estimation of proportions in
m-units, and to derive from the joint posterior distribution on these
parameters, the marginal distributions for each individual element.
Beyond this there was a further desire to use this posterior
distribution in a full decision-theoretic analysis. Furthermore, there
was a desire to utilize in the analysis, not only a general level of
collateral information concerning the general level of performance of
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other students in the instructional unit, but also the performance of
the particular student on other instructional units. This would be
particularly useful in placement testing, where a student takes short
tests on several possibly highly related instructional objectives. The
technical results required for these analyses are contained in
papers by Novick, Lewis, and Jackson (1973, Appendix 3.1), Lewis,
Wang, and Novick (1973, Appendix 3.2), Lewis, Wang, and Novick (1973,
Appendix 3.3), Wang (1973, Appendix 3.4), Wang and Lewis 0.973,
Appendix 3.5), and Wang and Lewis (1973, Appendix 3.6), as listed in

our overview summary that follows shortly. These papers tend to be
rather technical in nature, and if one wishes to read more than the
introductory and summary statements, one will need to follow some
detailed statistical and mathematical arguments. Nonetheless, it was
necessary to present this material in a rigorous technical form so
that researchers wishing to extend these results would have a basis for
such extension. These papers can be found in Appendix Number 3 to
this report.

The general question of the application of statistical-decision
theory would, in an IPI context, be one which we felt required fairly
extensive discussion. Male the threshold-loss function that we have
adopted is certainly a useful one, and indeed we mean to have the
results derived from it taken seriously, we do believe further
significant improvements uay be possible, using more sophisticated loss
functions. To make this further work possible, we have included a
rather lengthy primer on decision analysis for Individually Prescribed
Instruction which comprises the content of Appendix Number 2. It is
our hope that persons within IPI, and those associated with other
individualized instructional programs will give this paper some study,
and hopefully a dialogue 14131 ensue among such people discussing the
relative merits and demerits of various possible loss functions.

We have also, in this project, been cognizant of the fact that
the procedures we are proposing are extraordinarily complicated, both
theoretically and practically. Yet we intend that these procedures
b.) adopted for classroom use by persons whose professional skill lie
in instruction and not in theoretical-educational measurement or
statistical decision theory. Thus we knew we would need to provide
means for making these procedures available in a simple format for
classroom use. We have attempted to accomplish this in two ways.
First of all, in our theoretical appendix (Appendix Number 3), we
have provided a set of tables (Wang, 1973, Appendix 3.4) which indeed
drastically simplify the computational work in Bayesian IPI decision

making. We might also refer to a paper in development by Millman
(in preparation) which gives a detailed numerical example applying
our methods and these tables to an IPI decision - making problem.

However, we did not feel that this approach would be entirely
satisfactory. Our feeling has been, and remains, that the whole
arithmetic process required for decision making will best be done, in
toto, by a computer. We note that mini-computers are now in use
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within IPI, and with the continuing reduction in costs of such
equipment, we can speculate that in the future IPI will, in its
standard form, be monitored in a computer-based environment. The
question then was, could te take our decision making procedures and
computerize them in such a way that this enormously complicated and
sophisticated machinery could be used by persons having a verbal-
theoretical understanding of what was being done, but little precise
understanding of the sophisticated mathematical and statistical
theory underlying the given formulas.

Fortuitously, the principal investigator has been involved,
concurrently, in a project concerned with the interactive conversational
analysis of data using Bayesian methods. It therefore seemed
appropriate that some additional efforts be made in this area, and
that the result from this additional effort be reported as part of
this project. The problems faced in attempting to provide
conversational language programs to monitor IPI are identical with
those in other conversational statistical applications. These are
discussed in detail by Novick (1973, Appendix 4.1), Isaacs (1972,
Appendix 4.2), Isaacs (1973, Appendix 4.3), and Christ (1973,
Appendix 4.4).

In summary then, Appendix Number 2 deals witn possible further
developments in decision-theory application, Appendix Number 3 deals
with the core-mathematical theory underlying our proposed applications,
and Appendix Number 4 deals with the computer problems involved in
such applications. For most readers however, the papers of greatest
interest will be those contained in Appendix Number 1. Here four
papers are given which are concerned directly with the implementation
of these new methods within Individually Prescribed Instruction.
These papers should probably be read in the order in which they appear.

The paper by Novick and Lewis on Prescribing Test Length for
Criterion-Referenced Measurement (1973, Appendix 1.1), in fact is much
more general than its title would indicate. It is rather a careful
laying out and consideration of all the factors which must be taken
into account, both in the actual decision process and in the
consideration of necessary length for criterion-referenced tests. One
of the difficulties, we think, in attempting to apply decision theory
in IPI, is that some of these considerations have not been discussed
in the literature, and therefore there is insufficient guidance on
these matters. Specifically isolated for consideration are: 1) the
current level of functioning of the student, 2) the minimum acceptable
criterion level to certify mastery, 3) the prior probability that a
student has attained mastery, 4) the loss ratio for false positive
and false negative decisions, and 5) the premium on testing time
within the instructional process. Following a discussion of these
topics it becomes possible to intelligently investigate the test length
problem and to give some tentative recommendations. Hambleton and
Novick (1973, Appendix 1.2), explicate some of the ideas contained
in the paper of Novick, Lewis, and Jackson (1973, Appendix 3.1)4
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in a less theoretical language and provide a brief introduction to
the threshold loss paradigm. Ferguson and Novick (1973, Appendix 1.3),
give some details on precisely how these methods can be implemented
within Individually Prescribed Instruction, and Hambleton (1973,
Appendix 1.4), broadens the perspective by indicating the relevance
of these methods both within IPI and for other instructional programs
such as Project Plan.
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II. OVERVIEW

In JanuaLy of 1972, the United States Department of Health, Education,
and 'Welfare awarded a grant of $99,492 to Dr. Melvin Novick, Director
of ACT's Psychometric Research Department for a study on New
Statistical Techniqaes to Evaluate Criterion-Referenced Tests Used
in Individually Prescribed Instruction." The focus of the project

has been on the application of certain Bayesian methods introduced
by Professor D. V. Lindley of the University College London whose
research has been supported in part by ACT for the past three years.
Work by Melvin R. Novick, Charles Lewis, and Paul H. Jackson, on the
Bayesian estimation of proportions in m groups, released as ACT
Technical Bulletin No. 1, and subsequently published in Psychometrika.
has been the initial take-off point for applications in this project.
This work suggests that in a criterion-referenced measurement
situation, an increase in precision equivalent to adding from six
to twenty-five item can be attained by using the Bayesian method.
In this newly defined approach, the estimation of mastery scores is
replaced by the determination of the probability that the true
mastery scores ace larger than some specified criterion level. The

result of this research is the creation cf a new test theory for
Individually Prescribed Instruction, and a statistical and compu-
tational technology for implementing this theory.

A bibliography of the papers completed for this project, with
annotations indicating how each pap_: fits into the overall project
development fuZiows.

Annotated Bibliography

1.1 Novick, M. R., & Lewis, C. Prescribing test length for

criterion-referenced measurement. ACT Technical Bulletin
No. 18. Iowa City, Ics;a: The American College Testing

Program, 1973.

This bulletin demonstrates the effectiveness of the eight to
twelve item criterion-referenced tests in placement pre and
posttesting when the new Bayesian methods of analysis are used.
It is also noted here that Bayesian techniques can be applied
sequentially without modification, and thus all of the benefits
of seqUential analysis are available without further complicating
the analysis. In phe introduction, work of Millman is used to
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demonstrate the inadequacy of classical analysis. Specific test
length recommendations are given dependent upon (1) the loss
ratio, (2) prior probabilities, and (3) the specified criterion
level.

1.2 Hambleton, R. K., & Novick, M. R. Toward an integration of
theory and method for criterion-referenced tests.
Journal of Educational Measurement, 1973, 10(3), 159-170.

This article describes, in nontechnical language, the ideas and
methods introduced in Reference 3.1, and elaborated in Reference
3.2, to take account of the collateral information on {m -l)
students to help estimate the probability that the mastery
level of each m-th student is greater than the required
criterion level. The central concept taken from References 3.1
and 3.2, and exposited here, is that in Individually Prescribed
Instruction decisions must be based on the aposteriori probability
that the student's level of functioning is greater than the
prescribed criterion level. This approach Is illustrated using
a simple threshold loss function and a posterior marginal
distribution that depends on sample, prior, and collateral
information.

1.3 Ferguson, R. L., & Novick, M. R. Implementation of a Bayesian
system for decision analysis in a program of Individually
rrescribed Instruction. ACT Research Report No. 60.
Iowa City, Iowa; The American College Testing Program,
1973.

This report provides some precise detail of how the new methods
can be used in placement testing, pretesting, and posttesting.
The various decision modes of IPI are identified and the precise
way in which the new techniques can be implemented at each need
are discussed in detail.

1.4 Hambleton, R. K. A review of testing and decision-making
procedures for selected individualized instructional
programs. AC' Technical Bulletin No. 15. Iowa City,

Iowa; The American College Testing Program, 1973.

This bulletin discusses the similarities and differences among
several approaches to individualized instruction and concludes
that the new Bayesian methods will be useful in each of these
approaches. Included in the survey are systems used in
Individually Prescribed Instruction, Project Plan, Mastery
Learning, and approaches to computer assisted instruction.
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2.1 Davis, C. E., Hickman, J., & Novick, M. R. A primer on decision

analysis for Individually Prescribed Instruction. ACT
Technical Bulletin No. 17. Iowa City, Iowa: The American
College Testing Program, 1973.

This bulletin provides an overview of how the utilities of various
outcomes can be logically combined with the aposteriori
probabilities of these outcomes to provide a coherent basis for
decision making. This paper illustrates in detail, results for
several important utiltiy functions, thus going beyond thc

simple threshold loss situation. For each of these loss
functions, an illustration is given of how to determine the

advance-retain observed cut-score.

3.1 Novick, M. R., Lewis, C., & Jackson, P. H. The estimation of

proportions in m groups. Psychometrika, 1973, 38, 19-46.

This is the fundamental theoretical paper which provides the
basis in Bayesian methodology for all of the methods, theory
and applications discussed in the remaining project papers. This

paper was produced prior to the commencement of the project and
was the basis for the project proposal.

3.2 Lewis, C., Wang, M., & Novick, M. R. Marginal distributions
for the estimation of proportions in m groups. ACT

Technical Bulletin No. 13. Iowa City, Iowa: The American
College Testing Program, 1973.

This paper provides the key methodological development of the
project -- a procedure for obtaining the aposteriori probability
of mastery for each student individually from the m-group
proportion method, using a yell established computational
approach to marginalization due to Box and Tiao.

3.3 Lewis, C., Wang, M., & Novick, M. R. A proper prior for ur

in estimating proportions in m groups. ACT Technical
Bulletin Supplement No. 13-1. Iowa City, Iowa: The
American College Testing Program, 1973.

This supplement introduces an improvement to the basic theory
of Reference 3.2 that makes it possible to incorporate prior
information on the average of the group means.

3.4 Wang, M. Tables of constants for the posterior marginal estimates

of proportions in m groups. ACT Technical Bulletin No. 14.

Iowa City, Iowa: The American College Testing Program, 1973.

These tables make it possible to monitor Individually Prescribed
Instruction without dependence on a computer.
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3.5 Wang, M., & Lewis, C. Estimation of proportions in a two-way

table. ACT Technical Bulletin No. 16. Iowa City, Iowa:
The American College Testing Program, 1973.

This work makes it possible to take account of the collateral
information contained in the test scores on t-1 objectives as
well as mrl students in estimating the proficiency of each
m-th student on each t-th objective. Following transformation,
a full two-way analysis of variance is used, though it is also
shown in the following paper that a two-way no interaction
model consistently provides almost identical results.

3.6 Wang,. M., & Lewis, C. Marginal distribution for the estimation
of proportions in a two-way table. ACT Technical Bulletin
No. 19. Iowa City, Iowa: The American College Testing
Program, 1973.

An extension of the previous paper, this bulletin provides a
method of assessing the probability of a student's mastery of
that objective. A no-tuteraction model is used here because
of computational difficulties encountered in attempting
marginalization with the interaction model.

4.1 Novick, M. R. High school attainment: An example of a
computer-assisted Bayesian approach to data analysis.
International Statistical Review, 1973, 41, 264-271.

Prepared prior to the beginning of this project, this paper
demonstrates how a nonstatistician can use complex statistical
techniques with the step-by-step conversational guidance of
a system of Computer Assisted Data Analysis (CADA). As a
result of this finding, we believe that CADA can make it
possible for the classroom teacher to use the sophisticated
statistical procedures developed in this project.

4.2 Isaacs, G. L. Interdialect translatability of the BASIC
programming language. ACT Technical Bulletin No. 11.
Iowa City, Iowa: The American College Testing Program,
1972.

A study of the BASIC programming language showing how it
is possible to program in one dialect in such a way as
to facilitate translation into other dialects, and thus
make it possible to transport CADA programs to many different
kinds of computer installations. This research makes it
possible to implement CADA mode IPI programs on any
adequate computer system.
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4.3 Isaacs, G. L. A tabular survey of basic computer systems.
ACT Technical Bulletin Supplement No. 11-1. Iowa City,
Iowa: the American College Testing Program, 1973.

These tables provide a feature by feature comparison of BASIC
language dialects as implemented on various computer systems
with an evaluation of the adequacy of each dialect for CADA
implementation. Particular emphasis is placed on chaining,
string handling, and formatted output capability, as these
are the BASIC features most needed in CADA. This report,

completed in March, 1973, shows that a large number of computer
systems are adequate for CADA applications. An on-going survey

of BASIC systems indicates that many of these are being
substantially improved. Most of these system updates should
be completed within the next ninety days, shortly after which
a revision of Technical Bulletin Supplement No. 11-1 will be
prepared.

4.4 Christ, D. E. The CADA monitor. ACT Technical Bulletin No. 12.
Iowa City, Iowa: The American College Testing Program,

1973.

This is a description of the Monitor used to organize the CADA
package of programs. The interrelationship of the programs
currently available on the Monitor is shown. Also the
design philosophy, which enables the programs to be easily
interconnected and used by unsophisticated investigators, is
discussed. Much of the design philosophy is applicable to many
other interactive situations, since its main thrust is the
improvement of the man- machine interface, while minimizing
programming effort.
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III. SUMMARY OF RESULTS

A. The Structure of the Statistical Monitoring System and Its
Implications.

The prerequisite for the introduction of a statistical monitor for
IPI is a clear statement of the problem and an understanding of the
evaluations that would need to be made for input into the decision-
making process. In the paper entitled, "Prescribing Test Length for
Criterion-Referenced Measurement" by Novick and Lewis (1973, Appendix
1.1), each of the kinds of information required for prescribing test
length and making decisions based on criterion-referenced tests is
discussed. The five major considerations in structuring IPI decisions
are:

(1) The current level of functioning (11) of the student,
(2) The minimum advancement score (so) required for defining

mastery of a module,
(3) Background information available on each student and on the

instructional process,
(4) Relative losses incurred in making false positive and false

negative decisions, and
(5) The premium on testing time within the instructional process.

In criterion-referenced testing, we think of a hypothetical
(infinitely large) pool of test items relevant to a single behavioral
objective. A student is considered a master of a behavioral objective
if the percentage of items he would get correct over the entire pool,
his level of functionirs (s), exceeds a specified criterion level (w0).
Because a test contains only a small sample from that pool, errors
in decision making must be expected.

As a first approximation it may be assumed that a loss a is

incurred if a student is deemed a master when he is not (a false

positive) loss b is incurred if he is deemed a nonmaster when he is
not (a false negative), and zero loss if a correct decision is made.
A coherent system of decision making is based on the aposteriori
probability that the student's level of functioning is above the
specified criterion level and the ratio a/b of losses associated with
false positive and false negative decisions. The rule is that a
student is advanced if the ratio of the probability that he is a
master to the probability that he is not, exceeds the ratio of false
positive to false negative losses. This is equivalent to choosing

that action (advance or retain) which has the highest expected utility.

Given a prior distribution for a student's level of functioning and
a given test length (sample size) it is possible to determine a
minimum advancement (test) score required to indicate proficiency.
This is the lowest score that will yield an aposteriori probability of
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mastery large enough to justify an advancement decision. The details
of this analysis are given in this paper (Novick and Lewis, 1973;
Appendix 1.1). Consideration is given to specified criterion levels

of .70, .75, .80, and .85. The loss ratios are assumed to take
the values 1.5, 2.0, 2.5, or 3.0. Thus it is assumed that typically
a loss incurred for a false positive decision will be at least one and
one-half times that for a false negative decision. Various prior
distributions are considered for each specified criterion level.
Generally it is assumed that the prior distribution will have a mean
value near the specified criterion level and typically and desirably
slightly larger. For each analysis with a particular expected value
for the prior distribution, four different priors are considered with
varying degrees of certainty in the prior distribution. The results
of these analyses are summarized in a set of tables, seven through
eleven (Appendix 1.1, Pages 20, 23, 26 and 28). For each combination
of specified criterion level, loss ratio, and prior distribution, a
recommended test length and minimum advancement score are given. At
the end of each table, some general recommendations are given which seem
to be reasonable for a wide range of prior distributions for the
particular specified criterion levels and loss ratios. For example,
with a wo value of .70, and a prior distribution having expectation of
.70, the general recommendation for a loss ratio of 1.5 is a test of
eight items with the requirement of six out of eight correct for
advancement. For a loss ratio of 2.0, a test of 13 items is recommended
with a score of ten being required for advancement. The ratio of 2.5
requires a test of 14 items with eleven correct for advancement, and
a loss ratio of 3.0 requires a test of 15 items with 12 correct for
advancement.

We suspect that these particular recommendations will be pleasant
news for 1PI people. If the loss ratio is as small as 1.5, as it may
well be in some situations, the indication here is that an 8-item
test will be satisfactory. Even with a loss ratio of 2.0, a 13-item
test will do. Loss ratios of 2.5 and 3.0 do not call for greatly
increased test lengths, however loss ratios as high as this may indicate
that the structure of the unit and its relationship to other units
could profitably be reevaluated. We shall discuss this and similar
questions later in this report. With a no value of .75, and a prior
distribution with expectation .75, and a loss ratio of 1.5, the recom-
mended test length is 10 items with a minimum advancement score of 8.
While this will likely be thought of as a very acceptable test length,
the situation does not remain as favorable when the loss ratio rises
to 2.0. Here the test length recommendation is for a test of 25 items
with a minimum advancement score of 16. As is indicated later in the
paper, this situation can be improved by training the group to a
higher average level of performance. For a value of .80 and a
prior expectation of .80, reasonably satisfactory test length specif i-
cations are obtainable provided the loss ratio does not exceed 2.0.
Specifically, for a loss ratio of 1.5, a seven-item test is deemed
adequate with a minimum advancement score of six. The loss ratio of

2.0 on an eight-item test will be adequate with a minimum advancement
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score of seven. With loss ratios 2.5 and 3.0, tests of length 20
and 22, with minimum advancement scores of 17 and 19, respectively,
are recommended.

When the situation does suggest the appropriateness of high loss
ratios, a considerable reduction in the required test length can be
obtained by seeing. to it that the means of the prior distribution is
rather higher than the specified criterion level. For example, with a
wo value of .80 and a prior expectation for w of .85, 12 and 13-item
tests will be adequate for loss ratios of 2.5 and 3.0. This compares
with test lengths 20 and 22 where the prior expectation of Tr was .80.
The Novick-Lewis paper contains detailed discussions of the relation-
ship of the various input variables beyond that which we shall not
cover here, though we urge readers to study that paper carefully.
We shall consider here only some of the broad implications of this
study for the very structure of Individually Prescribed Instruction.
First we would note that there has been a definite tendency in /Pi
to require relatively high criterion levels; typically, the value
.85 is used. One might well speculate whether this really reflects
a perceived need for a high criterion level, or whether it is, in
fact, a function of a high loss ratio combined with a desire for a
short test length. Only when we get to the point that required loss
ratios and criterion levels can be independently evaluated will it
be possible to use tables such as the ones presented in this paper.
We might speculate, and indeed hope, that for most situations a
specified criterion level of .75 will be adequate, but that a loss
ratio greater than one, possibly 1.5 or 2.0, will be appropriate.

The tables presented in this paper also have a great implication
for the amount of time that might best be put into an individual
training unit. When loss ratios are high, it may well be highly
advantageous to strengthen the training program to the extent that
the mean output is well above the specified criterion level. This
will make it possible to use short tests, or alternatively, will
generally reduce the risk of incorrect classification. This will of
course be more expensive and this investment must be balanced out
against the reduction of cost of testing and the reduction in the
expected loss due to incorrect decision.

Another implication of these tables is that the training module
should also be structured so that very high loss ratios are not
appropriate. This will be accomplished by seeing to it that individual
modules are not overly dependent on preceding ones. Here again, one
is balancing off changes in the module itself against changes in the
criterion-referenced testing.

We would emphasize again that the primary purpose of this paper
is to provide a structure for an intelligent discussion of decision
making within /P/, including the question of prescribing test length.
The results contained here,.we think will be useful, but they should
in no way be considered to be definitive. We do not know what loss
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distribution of the percentage of items answered correctly by students,
and it is thus possible to make inferences about the true level of
functioning of each student and the mean and standard deviation of
these true values in the population of students. It is further pointed
out that if the instructional program were completely efficient and
the students were without human frailty, there would be no variation
in true level of functioning of students on posttests. A student
would remain in a unit only until that instant at which his level of
functioning attains a prespecified criterion. However nothing
approaching this is possible with present instruction technology. In

the real world of IPI there will be some variation of true levels of
functioning among students on posttests. And it is pointed out that
this background information can be combined with direct observational
information to improve the decision-making process. It is also noted
that other background information can be used, namely that involving
the performance of the student on tests of other skills. It is argued
that surely a person scoring highly on t-1 subtests, and a little
less highly on t-th would, we suspect, have a true score on the t-th
test higher than his observed score, and that this somewhat lower
observed score might be due in part to bad luck or carelessness. It

is pointed out that the method for performing these analyses is
available from the work of Wang and Lewis (1973; Appendix 3.5 and 3.6).

The report ends by illustrating the kind of format that can be
used to transmit information to the instructional manager. Currently
following an IPI posttest, the manager receives a skill profile on
each student. On this profile the percentage correct that the student
got on each of the skills is reported. And from this the instructional
manager decides which skills the student must redo. Under the
proposed change the posttest profile would not consist of these
percentage correct scores, but rather, for each skill, the probability
that the student's true level of functioning is greater than the
specified criterion level. Thus while the information to be fed
to the instructional manager is somewhat different than it has been
in the past, it is certainly no more complex. It will be necessary

to teach instructional managers what these new numbers are, what they
mean, and hot; they are to be used. But this process should not

be terribly difficult. Indeed there may well be enough instructional
material in this particular report to accomplish this task.

The fourth paper appearing in Appendix Number 1 is "A Review of
Testing and Decision-Making Procedures for Selected Individualized
Instructional Programs" by Hambleton (1973). While the current
research effort has been directed primarily at one particular
individualized program, namely IPI, our view is that these same
methods can be used in other programs, namely Project PLAN and the
Mastery Learning Program, as well as in various approaches to computer-
assisted instruction. The survey by Hambleton gives us enough of a
picture of each of these programs to confirm this belief, and
furthermore suggests that none of these programs currently has any
sort of well-developed decision process. Undoubtedly a major under-

taking would be required to implement the Bayesian decision-theoretic
system in each of these. There is no question in our mind but

that this would be useful.
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B. Statistical Decision Theory for Individually Prescribed
Instruction W

The papers in Section A have proposed a statistical monitoring
system for IPI in the framework of statistical decision theory. In

particular, a threshold loss structure for the problem was proposed
and the implications of that loss structure were investigated. At

the same time it was pointed out that this is only one of many
possible loss structures for this problem and that indeed it should
only be considered as a first approximation to an appropriate loss
structure.

In Appendix 2 we present a paper entitled Primer on Decision
Analysis for IPI". The purpose of this paper is to provide a brief
semi-technical presentation of decision theory set within the context
of IPI, so that persons concerned with IPI can learn enough of
decision theory to understand how such methods can be applied. The
paper begins with a formal statement of decision theory in a two
decision situation and demonstrates the application of normal and
extensive form analysis. Computations for both types of analysis
are presented in complete detail so that the reader can see how each
operates. It is then pointed out that under general conditions, both
normal and extensive form of analysis will always lead to the same
decision, and since extensive form analysis is the easier to do, it
therefore becomes possible and desirable to adopt it as the standard
procedure.

In extensive form analysis the first task is to compute the
posterior probability distribution of the unknown parameter given the
prior distribution and the data. Once this is done this probability
distribution can be combined with the statement of the loss structure
to arrive at an extensive form decision. The discussion then turns
to the use of extensive form analysis with continuous posterior
distributions and specific applications and examples relevant to
IPI are given. This continuous form for the prior distribution is the
one that has been discussed previously in the expository papers.
Particular emphasis is placed in the discussion here on procedures
for determining cutting scores, that is the point in the observed
score continuv above which a student should be deemed a master and
below which he should be deemed a nonmaster. This complements the
work in Appendix 1.1.

There then follows a reasonably complete discussion of utility
theory which indeed makes a generalization of threshold loss possible.
In this way it is possible to have different utility for true positive
and true negative decisions. The paper then discusses a linear
utility function which may be useful in some situations followed by
a discussion of quadratic utility and exponential utility.

The most reasonable appearing utility function and one which may
indeed be most appropriate for IPI application is the squared



exponential utility function. A brief description of this utility
function is given. There then follows a discussion of a three action
problem in which the possible decisions are

(1) The student should be sent back one module,
(2) He should be retained in the present module,
(3) He should be advanced to the next module.

A complete analysis for this situation is discussed within the
framework of threshold utility. It is then discusses in the
framework of linear utility.

The final section of the report deals briefly with the question
of deciding whether or not it is useful, at a particular point in a

sequential testing environment, to take another observation, that is
have the student answer another item.

It is a general property of Bayesian inference that the analysis
is identical whether observations are taken all at once or taken
sequentially with the possibility of stopping whenever a decision
can legitimately be made. For example, if the appropriate rule is
that a student can be advanced if he gets seven out of eight and the
items are being administered sequentially, he could terminate test
taking if he were to answer the first seven items correctly or if,
at any rime, his total of incorrect responses exceeded one. In a
more general framework when exact Bayesian solutions are used rather
than the approximate ones discussed here and in Appendix 1.1, the
formal procedure for deciding whether or not an additional item
should be administered involves comparing the expected value of
information to be obtained from that item with the cost of
administering this item. This, of course, is that the value of
information and the cost of administering an item have been put on
a common scale. In practice this is a very difficult thing to do.
We have not in this report, therefore, considered costs involved in
testing but in theory this could be done.
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h
 
i
s
 
t
h
e
 
n
u
m
b
e
r
 
o
f
 
c
o
r
r
e
c
t
 
r
e
s
p
o
n
s
e
s
 
o
f
 
a
 
s
t
u
d
e
n
t
,
 
i
s
 
t
r
a
n
s
-

f
o
r
m
e
d
 
t
o
 
a
 
n
e
w
 
v
a
r
i
a
b
l
e
,
 
G
.

T
h
e
 
t
r
a
n
s
f
o
r
m
a
t
i
o
n
 
e
m
p
l
o
y
e
d
 
i
s
 
t
h
e

w
e
l
l
-
k
n
o
w
n
 
r
o
o
t
 
a
r
c
s
i
n
e
 
t
r
a
n
s
f
o
r
m
a
t
i
o
n
 
w
h
i
c
h
 
i
n
 
i
t
s
 
s
i
m
p
l
e
s
t
 
f
o
r
m
 
i
s

t
h
e
 
a
r
c
s
i
n
e
 
o
f
 
t
h
e
 
s
q
u
a
r
e
 
r
o
o
t
 
o
f
 
t
h
e
 
r
a
t
i
o
 
x
/
n
.

T
h
i
s
 
t
r
a
n
s
f
o
r
m
a
t
i
o
n

i
n
 
a
 
m
o
r
e
 
c
o
m
p
l
e
x
 
f
o
r
m
 
d
u
e
 
t
o
 
F
r
e
e
m
a
n
 
a
n
d
 
T
u
k
e
y
 
(
1
9
5
0
)
 
h
a
s
 
t
h
e

a
d
v
a
n
t
a
g
e
 
o
f
 
p
r
o
v
i
d
i
n
g
 
a
 
r
a
n
d
o
m
 
v
a
r
i
a
b
l
e
 
w
h
i
c
h
 
f
o
r
 
e
v
e
n
 
m
o
d
e
r
a
t
e

v
a
l
u
e
s
 
o
f
 
n
 
(
e
i
g
h
t
 
w
i
l
l
 
g
e
n
e
r
a
l
l
y
 
d
o
 
f
o
r
 
o
u
r
 
p
u
r
p
o
s
e
s
)
 
i
s
 
s
u
c
h
 
a
s
 
t
o

h
a
v
e
 
a
 
k
n
o
w
n
 
v
a
r
i
a
n
c
e
 
a
s
 
a
 
f
u
n
c
t
i
o
n
 
o
f
 
n
 
a
l
o
n
e
.

T
h
u
s
 
t
h
e
 
d
a
t
a
 
t
h
e
n

c
o
n
s
i
s
t
s
 
o
f
 
m
 
o
b
s
e
r
v
a
t
i
o
n
s
 
f
r
o
m
 
m
 
d
i
f
f
e
r
e
n
t
 
n
o
r
m
a
l
 
p
o
p
u
a
l
t
i
o
n
s

(
p
e
r
s
o
n
s
)
 
w
i
t
h
 
k
n
o
w
n
 
v
a
r
i
a
n
c
e
s
,
 
b
u
t
 
u
n
k
n
o
w
n
 
m
e
a
n
s
 
y
i
.

T
h
e
 
m
e
a
n

v
a
l
u
e
,
 
y
i
 
i
n
 
e
a
c
h
 
o
f
 
t
h
e
s
e
 
p
o
p
u
l
a
t
i
o
n
s
 
i
s
 
t
h
e
 
c
o
r
r
e
s
p
o
n
d
i
n
g
 
a
r
c
s
i
n
e

t
r
a
n
s
f
o
r
m
a
t
i
o
n
 
o
f
 
t
h
e
 
l
e
v
e
l
 
o
f
 
f
u
n
c
t
i
o
n
i
n
g
 
s
i
 
f
o
r
 
t
h
e
 
i
n
d
i
v
i
d
u
a
l

s
t
u
d
e
n
t
.

T
h
e
 
p
r
o
b
l
e
m
 
t
h
e
n
 
i
s
 
t
o
 
s
i
m
u
l
t
a
n
e
o
u
s
l
y
 
e
s
t
i
m
a
t
e
 
t
h
e
 
m

v
a
l
u
e
s
 
y
i

.

I
f
 
i
t
 
c
a
n
 
b
e
 
a
s
s
u
m
e
d
 
t
h
a
t
 
n
o
 
p
r
i
o
r
 
i
n
f
o
r
m
a
t
i
o
n
 
e
x
i
s
t
s
 
w
h
i
c
h

c
a
n
 
d
i
f
f
e
r
e
n
t
i
a
t
e
 
o
n
e
 
s
t
u
d
e
n
t
 
f
r
o
m
 
a
n
o
t
h
e
r
,
 
t
h
e
n
 
o
u
r
 
j
o
i
n
t
 
p
r
i
o
r

d
i
s
t
r
i
b
u
t
i
o
n
 
o
n
 
t
h
e
 
s
e
t
 
o
f
 
p
a
r
a
m
e
t
e
r
s
 
I
 
w
i
l
l
 
b
e
 
e
x
c
h
a
n
g
e
a
b
l
e
 
a
n
d
 
t
h
i
s
,

m
a
t
h
e
m
a
t
i
c
a
l
l
y
,
 
w
i
l
l
 
b
e
 
e
q
u
i
v
a
l
e
n
t
 
t
o
 
t
h
e
 
a
s
s
u
m
p
t
i
o
n
 
t
h
a
t
 
t
h
e
s
e
 
s
t
u
d
e
n
t
s

w
e
r
e
 
r
a
n
d
o
m
l
y
 
s
a
m
p
l
e
d
 
f
r
o
m
 
s
o
m
e
 
p
o
p
u
l
a
t
i
o
n
.

I
f
 
w
e
 
m
a
k
e
 
t
h
i
s
 
a
s
s
u
m
p
t
i
o
n

a
n
d
 
f
u
r
t
h
e
r
 
s
t
r
e
n
g
t
h
e
n
 
t
h
e
 
m
o
d
e
l
 
b
y
 
a
s
s
u
m
i
n
g
 
t
h
a
t
 
t
h
e
 
p
o
p
u
l
a
t
i
o
n
 
i
s

n
o
r
m
a
l
 
w
i
t
h
 
m
e
a
n
 
u
r
 
a
n
d
 
v
a
r
i
a
n
c
e
 
#
1
,
 
t
h
e
 
m
o
d
e
l
 
i
s
 
c
o
m
p
l
e
t
e
.

T
h
e
 
N
o
v
i
c
k
,
 
L
e
w
i
s
,
 
a
n
d
 
J
a
c
k
s
o
n
 
p
a
p
e
r
 
(
1
9
7
3
)
 
s
h
o
w
s
 
h
o
w
 
i
t
 
i
s

p
o
s
s
i
b
l
e
 
t
o
 
i
n
t
r
o
d
u
c
e
 
p
r
i
o
r
 
i
n
f
o
r
m
a
t
i
o
n
 
o
n
 
t
h
e
 
v
a
r
i
a
n
c
e
 
4
r
 
o
f
 
t
h
i
s

d
i
s
t
r
i
b
u
t
i
o
n
 
a
n
d
 
t
h
e
 
l
a
t
e
r
 
n
o
t
e
 
(
A
p
p
e
n
d
i
x
 
3
.
3
)
 
s
h
o
w
s
 
h
o
w
 
i
t
 
i
s
 
p
o
s
s
i
b
l
e

t
o
 
i
n
c
o
r
p
o
r
a
t
e
 
p
r
i
o
r
 
i
n
f
o
r
m
a
t
i
o
n
 
o
n
 
u
r
 
.

W
h
e
n
 
t
h
i
s
 
i
s
 
d
o
n
e
 
a
n
d
 
t
h
e
 
d
a
t
a
 
a
r
e
 
p
u
t
 
i
n
t
o
 
B
a
y
e
s
 
t
h
e
o
r
e
m
,
 
t
h
e

r
e
s
u
l
t
 
i
s
 
a
 
j
o
i
n
t
 
p
o
s
t
e
r
i
o
r
 
d
i
s
t
r
i
b
u
t
i
o
n
 
o
n
 
t
h
e
 
s
e
t
 
o
f
 
a
b
i
l
i
t
y

p
a
r
a
m
e
t
e
r
s
 
y
.

I
n
 
t
h
e
 
N
o
v
i
c
k
,
 
L
e
w
i
s
 
a
n
d
 
J
a
c
k
s
o
n
 
p
a
p
e
r
 
(
1
9
7
3
)
,
 
t
h
e

s
t
r
a
t
e
g
y
 
a
t
 
t
h
i
s
 
p
o
i
n
t
 
w
a
s
 
t
o
 
o
b
t
a
i
n
 
a
 
j
o
i
n
t
 
u
o
J
e
l
 
e
s
t
i
m
a
t
e
 
o
f
 
t
h
e

y
 
w
h
o
s
e
 
e
l
e
m
e
n
t
s
 
a
r
e
 
t
h
e
 
y
i
 
a
n
d
 
t
o
 
t
h
e
n
 
t
r
a
n
s
f
o
r
m
 
t
h
e
s
e
 
e
l
e
m
e
n
t
s

i
n
t
o
 
e
s
t
i
m
a
t
e
s
 
f
o
r
 
t
h
e
 
i
n
d
i
v
i
d
u
a
l
 
v
a
l
u
e
s
 
w
i
 
.

T
h
i
s
 
s
o
l
u
t
i
o
n
 
i
s

c
o
n
s
i
s
t
e
n
t
 
w
i
t
h
 
w
h
a
t
 
i
s
 
u
s
u
a
l
l
y
 
r
e
q
u
i
r
e
d
 
i
n
 
n
o
r
m
-
r
e
f
e
r
e
n
c
e
d
 
t
e
s
t
i
n
g

b
u
t
 
i
s
 
i
n
a
d
e
q
u
a
t
e
 
f
o
r
 
t
h
e
 
c
r
i
t
e
r
i
o
n
-
r
e
f
e
r
e
n
c
e
d
 
r
e
q
u
i
r
e
m
e
n
t
s
 
o
f
 
I
n
d
i
-

v
i
d
u
a
l
l
y
 
P
r
e
s
c
r
i
b
e
d
 
I
n
s
t
r
u
c
t
i
o
n
.242

0



T
h
e
 
c
e
n
t
r
a
l
 
t
e
c
h
n
i
c
a
l
 
d
e
v
e
l
o
p
m
e
n
t
 
o
f
 
t
h
i
s
 
p
r
o
j
e
c
t
 
i
s
 
c
o
n
t
a
i
n
e
d

i
n
 
A
p
p
e
n
d
i
x
 
3
.
2
.

I
n
 
t
h
i
s
 
p
a
p
e
r
,
 
t
h
e
 
w
o
r
k
 
o
f
 
N
o
v
i
c
k
,
 
L
e
w
i
s
 
a
n
d

J
a
c
k
s
o
n
 
(
1
9
7
3
)
 
i
s
 
e
x
t
e
n
d
e
d
 
b
y
 
t
a
k
i
n
g
 
t
h
e
 
p
o
s
t
e
r
i
o
r
 
j
o
i
n
t
 
d
i
s
t
r
i
b
u
t
i
o
n

o
f
 
t
h
e
 
Y
i
 
a
n
d
 
o
b
t
a
i
n
i
n
g
 
f
r
o
m
 
i
t
 
t
h
e
 
m
a
r
g
i
n
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
o
f
 
e
a
c
h

Y
i
 
.

T
h
e
 
a
p
p
r
o
a
c
h
 
h
e
r
e
 
i
s
 
e
n
t
i
r
e
l
y
 
n
u
m
e
r
i
c
a
l
,
 
a
s
 
i
t
 
i
s
 
n
o
t
 
p
o
s
s
i
b
l
e

t
o
 
o
b
t
a
i
n
 
a
 
c
l
o
s
e
d
 
f
o
r
m
 
e
x
p
r
e
s
s
i
o
n
 
f
o
r
 
t
h
e
s
e
 
m
a
r
g
i
n
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
s
.

A
f
t
e
r
 
s
e
v
e
r
a
l
 
u
n
s
u
c
c
e
s
s
f
u
l
 
a
t
t
e
m
p
t
s
,
 
a
n
 
a
p
p
r
o
a
c
h
 
u
s
e
d
 
o
r
i
g
i
n
a
l
l
y
 
b
y

B
o
x
 
a
n
d
 
T
i
a
o
 
(
1
9
6
8
)
 
a
n
d
 
b
y
 
H
i
l
l
 
(
1
9
5
6
)
 
w
a
s
 
f
o
u
n
d
 
t
o
 
b
e
 
a
d
e
q
u
a
t
e
.

T
h
i
s
 
a
p
p
r
o
a
c
h
 
i
n
v
o
l
v
e
d
 
o
b
t
a
i
n
i
n
g
 
t
h
e
 
m
a
r
g
i
n
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
o
f
 
Y
i

c
o
n
d
i
t
i
o
n
a
l
 
o
n
 
4
r
,
 
a
n
d
 
t
h
e
 
m
a
r
g
i
n
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
o
f
 
4
r
 
a
l
o
n
e
,
 
a
n
d
 
t
h
e
n

o
b
t
a
i
n
i
n
g
 
m
a
r
g
i
n
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
o
f
 
Y
i
 
(
u
n
c
o
n
d
i
t
i
o
n
a
l
)
 
b
y
 
n
u
m
e
r
i
c
a
l
l
y

i
n
t
e
g
r
a
t
i
n
g
 
w
i
t
h
 
r
e
s
p
e
c
t
 
t
o
 
4
r

.
A
.
 
c
o
m
p
u
t
e
r
 
p
r
o
g
r
a
m
 
o
f
 
s
o
m
e
 
c
o
m
p
l
e
x
i
t
y

w
a
s
 
w
r
i
t
t
e
n
 
t
o
 
a
c
c
o
m
p
l
i
s
h
 
t
h
i
s
 
n
u
m
e
r
i
c
a
l
 
i
n
t
e
g
r
a
t
i
o
n
.

I
f
 
w
e
 
a
s
s
u
m
e
 
t
h
a
t
 
I
P
I
 
i
s
 
b
e
i
n
g
 
m
o
n
i
t
o
r
e
d
 
i
n
 
a
 
c
o
m
p
u
t
e
r
i
z
e
d
 
e
n
v
i
r
o
n
-

m
e
n
t
,
 
t
h
i
s
 
c
o
m
p
u
t
e
r
 
p
r
o
g
r
a
m
 
c
a
n
 
b
e
 
i
n
c
o
r
p
o
r
a
t
e
d
 
a
s
 
a
 
s
u
b
r
o
u
t
i
n
e
 
a
n
d

i
t
s
 
c
o
m
p
l
e
x
i
t
y
 
b
e
c
o
m
e
s
 
a
 
m
a
t
t
e
r
 
o
f
 
n
o
 
c
o
n
c
e
r
n
 
s
i
n
c
e
 
t
h
e
 
u
s
e
r
 
n
e
e
d

h
a
v
e
 
n
o
 
d
i
r
e
c
t
 
c
o
n
t
a
c
t
 
w
i
t
h
 
i
t
.

O
n
 
t
h
e
 
o
t
h
e
r
 
h
a
n
d
 
t
h
e
r
e
 
i
s
 
o
f
t
e
n

a
 
d
e
s
i
r
e
 
t
o
 
m
o
n
i
t
o
r
 
I
P
I
 
o
f
f
l
i
n
e
,
 
i
n
 
w
h
i
c
h
 
c
a
s
e
 
i
t
 
w
o
u
l
d
 
n
o
t
 
b
e

p
o
s
s
i
b
l
e
 
t
o
 
m
a
k
e
 
t
h
e
 
n
e
c
e
s
s
a
r
y
 
c
o
m
p
u
t
a
t
i
o
n
s
 
o
f
 
t
h
e
 
m
a
r
g
i
n
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
s
.

I
n
 
o
r
d
e
r
 
t
o
 
m
a
k
e
 
t
h
i
s
 
p
o
s
s
i
b
l
e
 
a
n
 
a
s
y
m
p
t
o
t
i
c
 
e
x
p
r
e
s
s
i
o
n
 
f
o
r
 
t
h
e
 
m
a
r
g
i
n
a
l

d
i
s
t
r
i
b
u
t
i
o
n
 
o
f
 
Y
i
 
w
a
s
 
o
b
t
a
i
n
e
d
.

I
t
 
t
u
r
n
e
d
 
o
u
t
 
t
h
a
t
 
Y
i
 
c
a
n
 
b
e
 
w
e
l
l

a
p
p
r
o
x
i
m
a
t
e
d
 
b
y
 
a
 
n
o
r
m
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
p
r
o
v
i
d
e
d
 
t
h
e
 
n
u
m
b
e
r
 
o
f
 
i
t
e
m
s

i
s
 
e
i
g
h
t
 
o
r
 
m
o
r
e
,
 
a
n
d
 
1
1
4

i
s
 
n
o
t
 
t
o
o
 
n
e
a
r
 
z
e
r
o
 
o
r
 
o
n
e
.

U
n
f
o
r
t
u
n
a
t
e
l
y

t
h
e
 
m
e
a
n
 
a
n
d
 
v
a
r
i
a
n
c
e

o
f

t
h
i
s
 
n
o
r
m
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
c
a
n
n
o
t
 
b
e
 
o
b
t
a
i
n
e
d

a
s
 
c
l
o
s
e
d
-
f
o
r
m
 
e
x
p
r
e
s
s
i
o
n
s
 
a
n
d
 
m
u
s
t
 
i
n
 
f
a
c
t
 
b
e
 
c
a
l
c
u
l
a
t
e
d
 
n
u
m
e
r
i
c
a
l
l
y
.

I
t
 
t
u
r
n
e
d
 
o
u
t
,
 
a
g
a
i
n
,
 
t
h
a
t
 
t
h
e
s
e
 
c
o
m
p
u
t
a
t
i
o
n
s
 
a
r
e
 
c
o
m
p
l
e
x
.

T
h
e
r
e
f
o
r
e

i
n
 
o
r
d
e
r
 
t
o
 
m
a
k
e
 
i
t
 
p
o
s
s
i
b
l
e
 
t
o
 
d
o
 
o
f
f
l
i
n
e
 
I
P
I
 
m
o
n
i
t
o
r
i
n
g
,
 
i
t
 
w
a
s

n
e
c
e
s
s
a
r
y
 
t
o
 
c
o
n
s
t
r
u
c
t
 
a
 
s
e
t
 
o
f
 
t
a
b
l
e
s
 
f
o
r
 
t
h
e
 
m
e
a
n
 
a
n
d
 
s
e
c
o
n
d
 
r
a
w

m
o
m
e
n
t
 
o
f
 
t
h
i
s
 
a
s
y
m
p
t
o
t
i
c
 
d
i
s
t
r
i
b
u
t
i
o
n
.

W
i
t
h
 
t
h
e
s
e
 
t
a
b
l
e
s
 
(
W
a
n
g
,

1
9
7
3
;
 
A
p
p
e
n
d
i
x
 
3
.
3
)
 
t
h
e
r
e
 
i
s
 
l
i
t
t
l
e
 
d
i
f
f
i
c
u
l
t
y
 
i
n
 
p
e
r
f
o
r
m
i
n
g
 
t
h
e

n
e
c
e
s
s
a
r
y
 
c
a
l
c
u
l
a
t
i
o
n
s
.

I
t
 
m
a
y
 
b
e
 
a
p
p
r
o
p
r
i
a
t
e
 
a
t
 
t
h
i
s
 
p
o
i
n
t
 
t
o
 
m
a
k
a
 
s
o
m
e
 
r
e
m
a
r
k
s
 
c
o
n
c
e
r
n
i
n
g

t
h
e
 
f
o
r
c
e
 
o
f
 
t
h
e
 
e
x
c
h
a
n
g
e
a
b
i
l
i
t
y
 
a
s
s
u
m
p
t
i
o
n
.

T
h
i
s
 
a
s
s
u
m
p
t
i
o
n
 
r
e
q
u
i
r
e
s

t
h
a
t
 
w
h
e
n
 
t
h
e
 
a
n
a
l
y
s
i
s
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it may, in fact, be necessary to treat repeaters as a separate group.
These considerations can of course only be determined by studying
data from a particular IPI application. Nevertheless, it is important
that this assumption be well understood by those attempting application
of this technique.

Appendix Number 3.5 and 3.6 by Wang and Lewis (1973 a, b),
represents a significant advance in statistical technology for IPI
monitoring. While the theory contained in these papers is complete,
it has not been subject to even the modest empirical study that the

simpler theory has been, and as a result we do not have as clear an
indication at this point as to what further practical improvements
on the simpler theory are made possible here. The idea behind the
work in these references is that it is possible to gain information
about a particular student's ability on a particular behavioral
objective not only from the fact that he was in an instructional
program with a group of other students, all of whom received the same
training and that therefore they can be expected to be at a roughly
similar level, but also it is possible to note that this student has
been trained and is now being tested on other behavioral objectives
at the same time, and that his ability on the t-th behavioral objective
will surely be reflected to some extent by his perfc=ance on the
other t-1 objectives. This will be true if there is any relationship
at all between the t objectives, as there typically is. Thus the
whole Kelley (1923) approach can be used to adopt collateral information
from these other objectives for estimation of the t-th objective on
each student.

The mathematical approach here, following Toot arcsiae transformation,
is to utilize a full two-way analysis of variance model, which in the
first instance was studied with possible interaction. The first
Wang and Lewis paper (1973 a) shows how to analyze this model, and
shows how to get out point estimates. The work here is in a way
similar to some previous work done by Lindley though the special-
ization here yields much more simple results dua to the fact that the
variances known.

In these papers, a two-way no-interaction model is also used and
it is found that on the data sets investigated almost no difference
in point estimates were obtained from the interaction and no inter-
action models. A possibly wild speculation here i. that the arcsine
transformation not only gives homogeneous variance, and to oomc extent
normality of distribution, but also has the desirable side effect of
tending to yield additivity.

In the second Wang and Lewis paper (1973 b), the no-interaction
model is employed in order to get out marginal distributions for the
Yi in a manner very similar to that used in Appendix 3.2. These
posterior marginal distributions of the Yi can then be used in a
decision analysis in precisely the same way as posterior distributions

from simpler analyses. It proved impossible to obtain marginal
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distributions numerically with the interaction model and so the
no-interaction model was used.

The work in Appendix Number 3.5 and 3.6 should be useful both
in posttest and placement applications where inference needs to be
made simultaneously on several behavioral objectives for each student.
From the work in Appendix 3.1 we have a reasonably good idea of the
benefit to be gained from the collateral information on other students
taking the test. However, we have not as yet been able to give
sufficient thought to have any idea of how much information is gained
and how much resultant decrease in testing can be accomplished by
using information on the t-1 other behavioral objectives for each
student. In any event there is some limitation here, in that in order
to use the arcsine transformation theory with a normality assumption,
a sample of eight items seems to be almost necessary if we are to work
at all away from the center of the distribution. Thus even with a
n
o
value of .75,.an n of 8 seems desirable, if not absolutely necessary,

while with a 1r0 value of .85, an item sample of size 8 seems at best
to be barely adequate to justify the assumptions of the model.

At this point it seems clear that the theory will be extremely
useful, but that it will be necessary to study and determine the kinds
of distributions that are to be found in practice and to determine
as a result of this what test lengths and decision rules will be
appropriate. The discussion in Appendix 1.1 barely begins to tap
the question of test length specification. However, it will be
exceedingly difficult to do any further work on this without a close
look at real data.
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the sophisticated features of that dialect, and to then write programs
which could be very easily translated into any other dialect. At
present we have been working with the Hewlett Packard HP2000C dialect
of BASIC, but we could equally well work with the Digital Equipment
Corporation PDP11/40 dialect. In either case, if care is taken in

the writing of the program, translation to the other dialect or
indeed to any other dialects would be very easy.

The second report written by Isaacs (1973, Appendix 4.3), carefully
surveys all of the BASIC dialects available in March of 1973, and
indicates the strength and weakness of each of these. The conclusion

is that most dialects have sufficient capability for CADA application,
and that therefore IPI monitoring could be accomplished with them.
It should be noted that BASIC dialects for mini-computers are under
constant states of revision and that by the time this report is filed,
many of the surveyed dialects will be much stronger than they were
in March of 1973. In particular, we would note that the Wang 2000
super desk calculator would seem to come very close to having the
capability for CADA application. If this Is true, then the cost of
the computerized IPI management becomes almost trivial.

The final paper in this report is a technical description of the
CADA monitor indicating how subroutines can be chained to the monitor
in BASIC and how it is possible to continually update and improve
the monitor without disturbing the system in operation.

The statistical methodology developed here, the availability of
relatively inexpensive computational machinery, and the clear under-
standing and explication of a theoretical structure for IPI, we think
now makes it clearly possible and highly desirable to introduce a
structured management for IPI. The theory presented here is still
just that, theory. To make it work it is now necessary to implement
these decision-making procedures within an ongoing IPI operation.
No doubt such application will result in the refinement of the theory
and hopefully in its improvement.
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Prescribing Test Length For Criterion-Referenced Measurement

I. Posttests

by

Melvin R. Novick and

The American College Testing Program
and

The University of Iowa

Charles Lewis

The University of Illinois

Introduction

In a program of Individually Prescribed Instruction (IPI), where a

student's progress through each level of a program of study is governed by

his performance on a test dealing with individual behavioral objectives,

there is considerable value in keeping the number of items on each test

at a minimum. The specified test length for each objective must, however,

be adequate to provide sufficient information regarding the student's degree

of mastery of the behavioral objective being tested. Just what the minimum

acceptable length will be depends on the manner in which test information

is used to make decisions about individual students, the level of

functioning required for defining mastery of an objective, the relative losses

incurred in making false positive and false negative decisions, the background

information available on the student and on the instructional process, and

the premium on testing time within the instructional process. Our purpose in

The research reported herein was performed pursuant to Grant No.
OEG-0-72-0711 with the Office of Education, U. S. Department of Health,
Education, and Welfare, Melvin R. Novick, Principal Investigator.
Contractors undertaking such projects under Government sponsorship are
encouraged to express freely their professional judgment in the conduct

of the project. Points of view or opinions stated do not, therefore,
necessarily represent official Office of Education position or policy.
We are grateful to Charles Davis and Nancy Petersen for helpful comments
and computations. This paper will be published in the CSE Monograph Series
in Evaluation, Number 3, a publication supported in part by the National
Institute of Education and by the American Educational Research Association.

30



I)

this paper is to discuss these issues and provide some broad guidelines for

test-length specification for IPI posttests. These specifications will be

tentative because of unresolved substantive and methodological issues, but

we believe that they should provide some improvement on current practice.

A separate, and rather more complex treatment will be required for placement

and pretest length specification.

Background

In a criterion-referenced measurement approach to Individually

Prescribed Instruction, we imagine a population of test items, having mixed

item difficulty, dealing with a particular objective and an ideal decision

which advances a student past this objective if he is able to answer at least

a given percentage of the items in the population. This minimum passing

percentage, the so-called criterion level, simply reflects the degree of

mastery deemed sufficient for this objective (although it implicitly involves

the difficulty of the items as well). The actual percentage of items that

a person would answer correctly in the population of items is called his

level of fenctioning. In practice, the advancement-retention decision must

be made from a small sample of observations (test items), and, hence, errors

in the decision process must be expected.

One common treatment of the test length problem in a criterion-

referenced measurement context has been given by Millman (1972). He

studied a standard decision rule which advances the student if the

percent of items correctly answered on a test equals or exceeds the

required criterion level. Here it is assumed that the items on the test

may be treated as a random sample from the population of interest, so

that the obtained percentage correct is a useful estimate of the true

population percentage for the student. Using binomial probability
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Table 1

Percent of Students Expected To Be Incorrectly

Advanced or Retained

Specified Criterion Level .70

Student's True Level of Functioning*
Advancement No. of

Score Test Items 50 55 60 65 70 75 80 85 90 95

6 7 6 10 16 23 67 55 42 28 15 4
6 8 15 22 32 43 45 32 20 11 4 1
7 9 9 15 23 34 54 40 26 14 5 1

7 10 17 27 38 51 35 22 12 5 1 -
0 11 11 19 30 43 43 29 16 7 2 -
9 12 7 13 23 35 51 35 20 9 3 -

10 13 5 9 17 28 58 42 25 12 3 -

31 14 3 6 12 22 64 48 30 15 4 -

12 15 2 4 9 17 70 54 35 18 6 -

Specified Criterion Level .75

Student's True Level of Functioning*

Advancement No. of

Score Test Items 50 55 60 65 70 75 80 85 90 95

6 8 15 22 32 43 55 32 20 11 4 1

7 9 9 15 23 34 46 40 26 14 5 1

8 10 6 10 17 26 38 47 32 18 7 1

9 11 3 7 12 20 31 55 38 22 9 2

9 12 7 13 23 35 49 35 20 9 3 -

16 20 1 2 5 12 24 58 37 17 4 -

17 21 - 1 4 9 20 63 41 20 5 -

18 22 - 1 3 7 17 68 46 23 6 -
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Table 1 (continued)

Specified Criterion Level .80

Student's True Level of Functioning*
Advancement No. of

Score Test Items 3C 55 60 65 70 75 80 85 90 95

6 7 6 10 16 23 33 45 42 28 15 4

7 8 4 7 11 17 26 37 50 34 19 6

8 9 2 4 7 12 20 30 56 40 23 7

8 10 6 10 17 26 38 53 32 18 7 1

9 11 3 7 12 20 31 46 38 22 9 2

10 12 2 4 8 15 25 39 44 26 11 2

11 13 1 3 6 11 20 33 50 31 13 2

12 15 2 4 9 17 30 46 35 18 6

17 20 1 2 4 11 23 59 35 13 2

19 22 - 1 3 7 16 67 42 17 2

Specified Criterion Level .85

Student's True Level of Functioning*

Advancement No. of
Score Test Items 50 55 60 65 70 75 80 185 90 95

7 8

8 9

9 10

10 11

11 12

17 19

19 21

4 7 11 17 26 37 50
2 4 7 12 20 30 44
1 2 5 9 15 24 38
1 1 3 6 11 20 32

1 2 4 9 16 28
1 2 5 11 24
- 1 3 8 18

34 19 6

40 23 7

46 26 9

51 30 10

56 34 12

56 29 7

63 35 8

*The true level of functioning is the percent of items a student
would be able to answer correctly if he were given the entire universe

of items.

Students having true level of functioning values less than the specified
criterion level should fail a test composed of all items from this universe.
However, on any given test of finite length, some of these students will get

more than the minimum advancement percent of the items correct and be

considered as "passers". The expected percent of such incorrect advancements

are given in the body of the table to the left of the dotted line.

Students having true level of functioning values equal to or greater
than the minimum advancement percent should pass such a test. The percent

of these students who will be incorrectly retained are shown in the table

to the right of the dotted line.
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tables, Millman obtained the probability that a student with a given

true level of functioning wenld be incorrectly advanced or retained by

this procedure.

Table 1 expands on some of Millman's computations and gives tie

conditional probability of incorrect advancement or retention for a variety

of true levels, test lengths, and minimum passing percentages. The first

impression this table provides is that a substantial proportion (sometimes

more than half) of the students with true levels close to, or at the

criterion level, will be incorrectly advanced or retained, at least for

the test lengths considered. There appears to be a slight improvement

in accuracy of decision as the test length increases from 8 to 22 items,

although this effect is largely hidden by fluctuation in the probabilities,

due to changes in the percentage correct required for advancement. For example,

with a criterion level of .7, the percentage correct required for advancement

is .75, .78, .70, .73, or .75 for test lengths of 8, 9, 10, 11, or 12 items,

respectively. This brings up a question as to the optimality of the decision

procedure assumed in Table 1. To provide a framework for answering this

question, let us consider some of the issues involved.

Suppose seven out of eight were taken as the minimum advancement score

when the criterion level os .75; the probability of incorrect advancement

would decrease substantially for all students with true levels below

the criterion level. This is shown in Table 2. On the other hand,

those above .75 suffer a substantial increase in their chances of being

incorrectly retained. Apparently, a more general framework is required

before even the decision procedure can be chosen, much less any judgment

made concerning minimum test length. This framework would need to take

into account on which side of .75 small expected errors were considered

to be more important.
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Table 2

Percent of Students Expected To Be Incorrectly

Advanced or Retained

Criterion Level = .75 Test Length = 8

Advancement
Score 50 55 60 65

6 15 22 32 43

7 4 7 11 11

True Level

7( J 75

55 32

26 163

6

80 85 90 95

20 11 4 1

50 34 19 6

A Framework For Specifying Test Length

Table 1 is very helpful in identifying the seriousness of the problem

of short tests. From a practical point of view, however, a solution to the

problem must involve looking at a different conditional probability, and

abandoning the simple decision procedure that Millman has so convincingly

demonstrated to be inadequate. Instead of the probability that a student

will attain a particular test score, given his true level, it is the

probability that a student's true level of functioning exceeds the specified

criterion level, given his test score, which is tequired in making a decision.

In other words, it is the test score--not the true level--which is given

(i.e. observed), and which is the basis for any decision to advance or

retain the student. Thus, a student should be advanced only if the probability

that he has attained or surpassed the criterion level, given his test score,

is sufficiently high. To obtain the necessary probability, an application

of Bayes theorem is required. In such an analysis, prior knowledge

(expressed in probibiliati; terms) of the student's true level of functioning

is combined with the (binomial) model information relating the observed

test score to true level; and, the resA.r is a posterior probability

4 I



distribution for true level of functioning, given test score. The

probability this distribution assigns to levels above the criterion

is the quantity of interest. In this formulation, the problem can be

described as selecting a minimum sample size and an advancement score, so

that students attaining that score will then have a sufficiently high

probability of having at least the minimum required level of functioning.

As a first approximation, let us suppose our knowledge of a student's

true level of functioning is vague, prior to having his test results.

If this state of knowledge is characterized by selecting a uniform

distribution on the interval from zero to unity for true level, w, Bayes

theorem provides the posterior probabilities listed in Table 3 for various

scores and test lengths. The posterior distributicns on which these

probabilities are based all belong to the Beta family, and the parameters

in each case are those given in the table, primarily for future reference.

To generate a decision procedgre on the basis of Table 3, we

must select a criterion level (no} and a minimum acceptable probability

that a student's true level (w) exceeds this criterion. Thus, for example,

we might take no = .80 and the minimum acceptable Prob(w > wolx, n) = .50,

where x is test score and n is test length. We would then be saying that

we wanted to advance the student only if we were at least 50Z

sure that his level of functioning was above .80. Then, using Table 3,

we see that with n = 8, all students having x > 7 would advance to the

next objective, but not those with x = 6. For a test of 12 items, the

minimum advancement score would be 10 correct.

Note, however, that if we required 80% assurance that the true level

of functioning was above .80, [Prob(w > .80) > .803, then even those with

eleven correct responses to twelve items would not be advanced. We think
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Table 3

Probability Student's True Level Of Functioning Is

Greater Than no Given A Uniform Prior Distribution

Minimum
Advancement

Score

No. of Posterior.

Test Items Distribution 50 55

Criterion Level--v
o

60 65 70 75 80 85 90 95

6 8 8(7, 3) 91 85 77 66 54 40 26 14 5 1

7 8 0(8, 2) 98 96 93 88 80 70 56 40 23 7

8 8 6(9, 1) 100 100 99 98 ordO 52 87 77 61 37

7 9 0(8, 3) 95 90 83 74 62 47 32 18 7 1

8 9 8(9, 2) 99 98 95 91 85 76 62 46 26 9

9 9 6(10, 1) 100 100 99 99 97 94 89 80 65 40

7 10 0(8, 4) 89 81 70 57 43 29 16 7 2

8 10 0(9, 3) 97 93 88 80 69 54 38 22 9 2

9 10 0(10, 2) 99 99 97 94 89 80 68 51 30 10

8 11 0(9, 4) 93 87 77 65 51 35 21 9 3

9 11 0(10, 3) 98 96 92 85 75 61 6 26 11 2

10 11 13(11, 2) 100 99 98 96 92 84 73 56 34 12

9 12 0(10, 4) 95 91 83 72 58 42 25 12 3 41=

10 12 0(11, 3) 99 97, 94 89 80 67 50 31 13 2

i. 12 0(12, 2) 100 100 99 97 94 87 77 60 38 14
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that it is unreasonable to require perfect performance as a standard for

advancement, and therefore, we need to improve upon this analysis. One

way is to use a longer test, but we can, at least, hope to find a procedure

in which a twelve-item test will be adequate.

The results in Table 3, although they provide relevant information

for mastery decisions about students based on test scores, do not

take full advantage o: the power which is available through the use

of prior knowledge. 1u pfrticular, it will seldom be the case that our

knowledge of a student'n crue level is adequately described by a uniform

distribution. For example, our prior probability that a student is

functioning above a criterion level of .8 might be approximately .75.

This would be the case if historical data suggested that about 75% of

the students who completed a unit of Individually Prescribed Instruction

proved to be at or above mastery level. Moreover, we might judge the

strength of our knowledge to be roughly equivalent to that based on a

score from d 12-item test. CA method for making this assesment will be

referenced shortly.)

When working with a binomial model, it is convenient and generally

very satisfactory to select a member of the Beta class of distributions to

characterize prior beliefs (Novick and Jackson, 1974). If this is done, the

posterior distribution is easily obtained, and in every instance will again

be a member of the Beta family. In fact, if the prior distribution is

B(a, b) and x success in n trials are observed, then the posterior distri-

bution is 0(x + a, n x + b). This can be seen in Table 3, where j.t is

noted that the uniform distribution is 0(1, 1). If we t. strict ourselves

to prior distributions in the Beta family, the beliefs specified in the

previous paragraph are characterized by 0(10.254, 1.746). Given this prior
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distribution and the indicated test results, the posterior distributions

and posterior probabilities of exceeding various criteria are provided in

Table 4. The precise stipulation of prior distributions must always be

done carefully, but extensive aids (Novick and Jackson, 1974, Novick,

Lewis, and Jackson, 1973) are available, and indeed an elaborate system

of Computer Assisted Data Analysis (CADA) is available (Novick, 1973) to

help an instructional decision maker specify his prior distribution. A yet

more sophisticated way of getting prior and posterior distributions for

each person is derived by Lewis, Wang, and Novick (1973) and the required

tables are given by Wang (1973). For the present, we shall suppose that

this work has been done carefully and that the prior distribution used in

the construction of Table 4 is appropriate.

Tables 3 and 4 demonstrate clearly the impact of prior knowledge

on our interpretation of test results. In Table 3, for example, the

posterior probability that a student with a score of six out of eight

items correct has a true level greater than .80 is only .26, whereas

in Table 4 this probability has increased to .60. This result should not

be surprising, in view of the fact that we have now set this probability

to be .75, apriori as compared to .20 in Table 3. If we felt the chances

to be very good that the student had mastered an objective (to a level above

.8) before we saw the test results, then a score of six out of eight will

not substantially change our beliefs; it will lower the probability, but

aposteriori may still leave the odds in favor of mastery. In many

applications, a prior probability of mastery may be no more than .60, but

the results will still differ sharply from those obtained, assuming vague

prior information. Note that if we were to adopt the rule that Je will

advance a student if the aposteriori probability of mastery is at least
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Table 4

Probability Student's True Level of Functioning Is

Greater Than no Given A 0(10.254, 1.746) Prior Distribution

Minimum Criterion Level ---no

Advancement No. of Posterior
Score Test Items Distribution 50

6

7

8

7

8

9

7

8

9

S

9

10

9

10

11

8 0(16.254,

8 8(17.254,

8 8(18.254,

9 8(17.254,

9 0(18.254,

9 8(19.254,

10 0(17.254,

10 0(18.254,

10 0(19.254,

11 0(18.254,

11 0(19.254,

11 0(20.254,

12 0(19.254,

12 8(20.254,

12 8(21.254,

3.746 100

2.746 100

1.746 100

3.746 100

2.746 100

1.746 100

4.746 100

3.746 100

2.746 100

4.746 100

3.746 100

2.746 100

4.746 100

3.746 100

2.746 100

11

55 60 65 70 75 80 85 90 95

100 98 96 90 78 60 37 15 2

100 100 99 97 92 R1 62 36 10

100 100 100 99 98 94 85 66 32

100 99 97 92 82 65 41 17 2

100 100 99 98 93 84 66 39 11

100 100 100 100 98 95 87 69 34

99 97 93 84 68 47 24 7 1

100 99 98 93 84 68 45 19 3

100 100 99 98 95 86 69 42 12

99 98 94 87 72 51 27 8 1

100 100 98 95 87 72 48 22 3

100 100 100 99 96 88 72 45 13

100 *9 96 89 76 55 30 10 1

100 100 99 96 89 75 52 24 4

100 100 100 99 96 90 75 48 14

Note: The mean and mode, respectively of 0(10.254, 1.746) are

.855 and .925 and for this distribution ProbOr > no) for no 22 .70, .75,

.80, .85 are .92, .86, .75, and .59, respectively. A close look at these

distributional characteristics will help a decision maker determine if

this prior distribution is a realistic characterization of his beliefs.
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.50, then in this example, we will advance him if the prior distribution

were that of Table 4, but not if it were that of Table 3.

When the decision maker specifies an informative prior distribution,

he is saying, in effect, that he wants a decision which will have a high

probability of being correct in that portion of the decision space in which

he thinks the student's ability truly lies. For example, referring to

Table 2, a decision maker with a high prior probability that the student had

a true level of functioning below .75 would, by virtue of his analysis,

require a minimum passing score of seven correct out of eight items. This

would assure him a low probability of misclassification for all values

below .75. Another decision maker with high prior probability that the

student was above criterion level would likely require only six out of

eight correct, and thus have low probability of an incorrect decision for

values of .75 or above.

Once we have decided to work with the posterior probability that a

student's level of functioning exceeds some criterion, given his test

score, and have made use of our prior knowledge in obtaining this

probability, another issue remains to be settled before we can turn

to the question of test length. Simply stared, we need to know how sure

we should be that a student has mastered an objective at the chosen level

befinw we make the decision to allow him to advance to the next objective.

For instance, is a posterior probability of at least .5, as was used in

the last example, a reasonable choice in all cases? Almost certainly

this last question should be answered in the negative. The point at

issue here comes down to an understanding of the relative disutilities or

losses associated with the false positive and false negative errors.

4 7.
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If it were no more serious to advance a student whose level was below

the criterion than to retain a student who was above, we would be behaving

optimally if we were to advance students with posterior probabilities above

.5 and retain the others. In many situations the prior probability will be

this high, and hence an advancement decision could then be made on an apriori

basis. On the other hand, we might consider the loss to be twice as great

for a false advancement than for a false retention. In this case, we should

only advance those students whose posterior probability for being above the

criterion exceeds 2/3. The general result is that we shall achieve the

smallest expected loss if we match the posterior odds to the loss ratio.

Thus, if the loss ratio is 2 to 1 (false advance to false retain), a

probability of 2/(2 + 1) gives matching odds of 2/3 to 1/3 above criterion to

below criterion).

Decision

Table 5

Losses Associates With Incorrect Decisions

Advance

Retain

True Level

It >
0

< 11
0

0 a

b

To express the result symbolically, consider the notation of Table 5.

Here a is the loss associated with advancing a student whose true level is

below z
o
, and b is the loss for retaining a student whose true level cxceeds

o
. The decision rule which minimizes expected loss in this situation is
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to advance a student if his test score is such that

b Prob(w > w
o
Ix, n) > a Prob(w < w

o
Ix, n),

and to retain him otherwise. This comparison is equivalent to comparing

the loss ratio alb to the probability ratio Prob(w > wolx, n)/Prob(w < wolx, n).

If a = b in our analysis, the decision procedure reduces to comparing

the median of the posterior distribution with the specified criterion

level. If the median is at least at this level, the student is advanced,

otherwise he is retained. In this situation, the decision procedure is

very similar to that used by Millman (1972). Though the procedure used by

Millman is not Bayesian, it is equivalent to comparing with the mode (rather

than the median) of the posterior distribution based on a uniform prior.

Thus, in effect, the sampling theory approach gives equal weight to all

equal intervals throughout the range of w; that is effectively, to take n to

be uniformly distributed apriori. This is seldom a reasonable prior

specification. We might also remark that the formulation in Table 5 can be

generalized to provide for differential utilities for correctly identifying

true positives and true negatives as well .s differential disutilities

(or losses) for false positives and false negatives as is done in Table 5.

To do this negative quantities (negative disutilities = utilities) would

need to replace the zeros in Table 5, and a slightly more complicated

analysis would not be used.

It may be worthwhile to summarize the situation at this point. An

instructor wishing to use test results in the context of Individually

Prescribed Instruction should be ready to supply three kinds of information.

First, a criterion level--the minimum degree of mastery required--must be

set. In Individually Prescribed Instruction this seems to run from about
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.70 to about .85. Second, prior knowledge of the student's true level of

functioning must be translated into probability terms, namely a prior

probability distribution for w . Typically, a carefully monitored program

will be such as to suggest a prior probability distribution that assigns a

provability of just more than .50 to the region above the criterion level.

If this is not the case, the general efficacy of the program should be

re-evaluated. A program that results in a much higher probability may be

wastefully long and one that results in a lower probability may require

strengthening. Finally, the relative losses associated with the two types

of incorrect decisions must be assessed. A ratio of more than 1/1 is the

rule (we are told) with ratios of 1.5/1 and 2/1 being common, and ratios

as high as 3/1 not being rare.

It should be clear that all three of the above determinations will

have an influence on the minimum necessary test length. As the criterion

level approaches unity, the test must be longer in order to provide adequate

information about a student's level of functioning in the neighborhood

of the criterion. If prior probabilities of mastery are sufficiently high,

very short tests become possible, but this is not and should not be the

typical case. Finally, higher loss ratios require longer tests to allow

the possibility of high posterior probability of mastery. We shall also

see that greater test lengths are sometimes required because of the obvious

restriction to integer valued sample sizes.

A Design For Test-Length Specification

The characteristics of the group, of students being tested must now

be considered as they relate to test-length specification. Each member
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Table 6

Selected Prior Distributions Far IPI Advancement Decisions

No.

Prior
Distribution

Effective
Prior

Sample Size Mean .00-.70

*
Prob(tr < TT < If )

Z - - U
.70-.75 .75-.80 .80-.85 .85-.90 .90-1.00

1 0(5.6, 2.4) 8 .70 .46 .12 .12 .12 .10 .08

2 B(6, 2) 8 .75 .33 .12 .13 .14 .13 .15

3 B(6.4, 1.6) 8 .80 .21 .10 .12 .15 .16 .26

4 B(6.8, 1.2) 8 .85 .12 .07 .09 .13 .17 .42

5 B(7.2, .8) 8 .90 .05 .04 .06 .09 .14 .62

6 B(7, 3) 10 .70 .46 .14 .14 .12 .09 .05

7 0(7.5, 2.5) 10 .75 .32 .13 .15 .15 .13 .12

8 B(8, 2) 10 .80 .20 .10 .14 .16 .17 .23

9 0(8.5, 1.5) 10 .85 .10 .07 .10 .14 .19 .40

10 0(9, 1) 10 .90 .04 .03 .06 .10 .16 .61

11 08.4, 3.6) 12 .70 .47 .15 .15 .12 .08 .03

12 0(9, 3) 12 .75 .32 .14 .16 .16 .13 .09

13 0(9.6, 2.4) 12 .80 .18 .11 .15 .18 .18 .20

14 0(10.2, 1.8) 12 .85 .09 .07 .11 .16 .26 .37

15 0(10.8, 1.2) 12 .90 .03 .03 .06 .11 .17 .60

16 0(10.5, 4.5) 15 .70 .47 .17 .16 .12 .06 .02

17 0(11.25, 3.75) 15 .75 .30 .16 .18 .17 .13 .06

18 0(12, 3) 15 .80 .16 .12 .17 .20 .19 .16

19 0(12.75, 2.25) 15 .85 .07 .07 .12 .18 .23 .33

20 0(13.5, 1.5) 15 .90 .02 .03 .06 .11 .19 .59

*Note: All entries have been rounded to two decimal places and smoothed so that the

row totals add to 1.00.
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of the group of students tested has been exposed to the same instruction

program under identical local conditions. If a particular student is

not considered atypical for this group, then our prior beliefs about his

true level of functioning should closely reflect the true distribution

of levels of functioning found in that group. Indeed, elaborate formal

procedures for, effectively, bootstrapping a prior distribution using,

for each examinee, the scores on the remaining m - 1 examinees are

described by Novick, Lewis, and Jackson (1973). Thus, a group characteristics,

through their effect on our prior distributions, do affect test-length

specification. If the average test score of the group is high (i.e.,

above the criterion level) and there is little variation among individuals,

shorter tests become feasible.

Since, in practice, prior distributions will be based upon on-site

experience, there will, of course, be different prior distributions

for different sites. What we shall attempt to do here is to show what

sample sizes will be required for a broad range of prior distributions

and loss ratios. What we need to do now, therefore, is to consider certain

combinations of prior distributions, criterion levels and loss ratios,

and see what sample size :.ill be adequate in each case.

Frr our analyses, we shall consider 20 different prior distributions

for the level of functioning n, four specified criterion levels, and four

loss ratios. For each criterion level, we shall consider all four loss

ratios and four of the prior distributions. The four loss ratios we

shall use are 1.5, 2.0, 2.5, and 3.0. The respective probabilities

P Prob(n > no} required for advancement [given by setting P/(1

equal to the loss ratios, a/b] are .60, .67, .71, and .75. Thus, with a
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loss ratio of 3.0, the posterior probability that the studentts level of

functioning is greater than the specified criterion level must be at least

.75, if he is to be advanced.

The twenty prior probability distributions we shall be considering

are given in Table 6 where they have been grouped in blocks of five, with

each block having a distribution with the respective mean values .70, .75,

.80, .85, and .90. The blocks differ with respect to the concentration of

the prior distributions. Within block, the distributions differ with

respect to their mean values. Note that in the first block the arguments

of each Beta distribution sum to 8, e.g., 5.6 + 2.4 mg 8. This indicates

that the amount of prior information contained in each of these distributions

is equivalent to what would be gained from a test containing eight items. If

given one of these prior distributions and some criterion level and loss ratio,

we specify an eightitem test, our posterior distribution will contain

information equivalent to that contained in 16 observations. This contrasts

with the classical procedure which uses no prior information. It is this

increment in information that is equivalent to prior observations which

permits a reduction in test length when a Bayesian procedure is used.

The first problem in doing an analysis is that of selecting a reasonable

prior distribution. For the present application, we would first need to

ask ourselves what we would expect to find as the mean level of functioning

in our p.*cttest group. With a specified criterion level of .70, we might

hope for a mean level of functioning of .70. Thus, we would have people in

training until such time as we would "expect' them to be qualified. Since

loss ratios are typically greater than one, some overtraining may be thought

to be useful, but as we shall see, excessive overtraining may be wasteful.
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Suppose, for concreteness, that we believe the mean population level

of functioning to be .70. Distributions 1, 6, 11, and 16 satisfy this

condition, and, hence, we may choose from among these. We note that

these distributions are in an increasing order of tightness, as may most

conveniently be seen in the probability assignment given in the last column,

to the interval (.90, 1.00). These probabilities are respectively .08,

.05, .03, and .02. We need to ask ourselves which of these wAlues seems

most reasonable, and this then will give us some preference among these

prior distributions. We might consider the relative weight of prior

information as seed by each prior distribution (8, 10, 12, and 15 equivalent

prior observations, respectively), and this should help to narrow our

focus to one or two adjacent prior distributions for this, or any other

application. Since the authors of this paper cannot know what an appro-

priate prior distribution will be in applications they have not seen,

it will be most helpful, we think, to work out sample size allocations

for several prior distributions and leave the final selection to be made

"in the field". We believe that the prior distributions, loss ratios,

and specified criterion levels usad here are typical of those found in

practice, and, therefore, that the specific results we shall obtain will

be useful. However, if other combinations present themselves, we believe

that the general methodology that we are demonstrating should be adequate

to the problem. Actually we shall find that most of our specifications

aro very robust with respect to the caoice of prior distribution within the

range we have considered.

Some Specific Test Length Recommendations

In Table 7, we give recommended sample sizes and minimum advancement

scores for so = .70, (alb) = 1.5, 2.0, 2.5, 3.0 and prior distributions

1, 6, 11, and 16. The values that we have settled on for the body of

5 1



Table 7

Recommended Sample Sizes and Advancement Scores

Prior
Distribution 4(z)

0(5.6, 2.4)1 (.70)

0(7, 3) (.70)

0(8.4, 3.6) (.70)

0(10.5, 4.5) (.70)

20

v
o
= .70

1.5 (.60)

Loss Ratio

2.0 (.67) 2.5 (.71) 3.0 (.75)

6/8(.62) 10/13(.70) 11/14(.74) 12/15(.78)

6/8(.61) 10/13(.69) 11/14(.73) 12/15(.77)

6/8(.61) 10/13(.68) 11/14(.72) 12/15(.76)

9/12(.62)
2

10/13(.67) 11/14(.71) 12/15(.75)

General Recommendations

6/8(75%) 10/13(77%) 11/14(79%) 12/15(80%)

1
Apriori, Prob(z > .70) for each of the four prior distributions is

.54, .54, .53, and .53.

2
For 6/8, Frob(z > .70) - .598.
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this table are not, in every instance, optimum in any statistical sense,

though we are confident that the risks associated with these decision rules

are in every case insignificantly different from the risks of the optiLeAm

procedures. In selecting values for this table we have sought sample

sizes and minimum advancement scores that would be very efficient over

a wide range of prior distributions. That we have been successful in this

endeavor is confirmed by our ability to give general recommendations

that hold throughout the range of prior distributions studied. Actually in

only one instance have we cheated (see footnote 2, Table 7), but again

the increase in expected loss will be trivial. We would also note that

the required percentage correct and the number of required observations

increases as the loss ratio increases, which "makes sense" on intuitive

grounds.

A rough indication of the near optimality of any of the individual

specifications can be gained from the closeness of the aposteriori

probability (indicated in parentheses following the specification) with

the value required by the particular loss ratio (given in parentheses

at the top of the column). Thus, with the prior distribution 0(7, 3), the

decision rule "six out of eight", abbreviated 6/8, leads to the aposteriori

distribution B(13, 5) and to Prob(x > .70) .61 which is just .01 greater

than the required level .60 for the loss ratio 1.5 (1.5 to 1). In this

instance, the specified decision rule may be very good. On the other

hand, consider the prior distribution 0(5.6, 2.4). Here the rule 11/14

leads to a value .74 when only .71 is required for a 2.5 to 1 loss ratio.



22

Actually, the specification 8/10 is somewhat better giving a posterior

probability of .729. Also for the prior distribution 0(7, 3), the posterior

probability with 8/10 is .718. With the loss ratio 2.0/1 and with the

prior 0(5.6, 2.4), the rule 719 leads to the posterior probability .68 as

compared to desired value of .67. In every case where we have specified

an "almost best" decision rule, the result has been an increase in the

specified sample size and the purpose has been to obtain uniformity of

specification over a reasonably wide range of amounts of prior information.

Considering our general ignorance concerning what might be an appropriate

prior distribution in specific applications, the specifications we have

given should be the more generally useful.

Another indication of how good a particular specification is can be

inferred from the closeness of the percentage correct required by the

advancement rule to the specified criterion level. Clearly, if the

percentage required by the advancement rule is very much larger than the

specified criterion level, a large percentage of qualified students will

be retained and this is undesirable, particularly for small loss ratios.

For large loss ratios, this is less important and hence higher advancement

ratios can, and will need to be tolerated. This feature is exhibited in

Table 7, where the advancement ratios increase with increasing loss ratios.

One can, of coarse, keep the advancement ratio down very close to the

specified criterion level even for higher loss ratios, but only by having much

larger sample sizes. For example with the prior distribution 0(5.6, 2.4)

the specified criterion level so .70 and the loss ratio 2.0, the advancement

ratio 72/100 is satisfactory since Prob(s > .70172/100) m .675, but

the indicated sample size is unacceptable.
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Prior
Distribution

Table 8

Recommended Sample Sizes and Advancement Scores

u
o
= .75

COO 1.5 (.60)

Loss Ratio

2.0 (.67) 2.5 (.71)

23

3.0 (.75)

0(6, 2)
1

(.75) 8/10(.65) 16/20(.70) 17/21(.74) 18/22(.77)

B(7.5, 2.5) (.75) 8/10(.64) 16/20(.69) 17/21(.73) 18/22(.76)

0(9, 3) (.75) 8/10(.63) 16/20(.69) 17/21(.72) 18/22(.75)

0(11.25, 3.75) (.75) 8/10(.62) 16/20(.68) 7/21(.71) 19/23(.77)
2

General Recommendations

8/10(80%) 16/20(80%) 17/2101%) 18/22(82%)

1Apriori, Prob(s > .75) = .56, .55, .55, and .54, respectively, for the

four prior distributions used in Table 8.

2
For 18/22, Prob(i > .75) = .744.

Table 9

Recommended Sample Sizes and Advancement Scores

no = .80

Prior
Distribution 4;60 1.5 (.60)

0(6.4, 1.6)1

0(8, 2)

0(9.6, 2.4)

0(12, 3)

Loss Ratio

2.0 (.67) 2.5 (.71) 3.0 (.75)

(.80) 6/7(.66)

(.80) 6/7(.65)

(.80) 6/7(.64)

(.80) 6/7(.63)

6/7(86%)

7/8(.70)

7/8(.69)

7/8(.68)

7/8(.67)

17/20(.72)

17/20(.72)

17/20(.71)

18/21(.73)
2

General Recommendations

7/8(88%) 17/20(85%)

lApriori, Prob(s > .80) = .57; for 8/10, Prob(s > .80) = .55
Prob(u > .80) = .54; for 8.5/10, Prob(s > .80) = .67; for 8.3/10,

Prob(i > .80) . .62; for 9/10, Prob(s 2.780) = .78.

2
For 17/20, Prob(s > .80) = .70.
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19/22(.78)

19/22(.77)

19/22(.76)

19/22(.75)

19/22(86%)

; for 16/20,
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Note that for each of the prior probabilities used in Table 7,

Prob(s > .70) > .50. Thus, on an apriori basis, advancement would be

indicated with a loss ratio 1.0. This will generally be true for the prior

distributions we shall be adopting for our analyses. The point is that

loss ratios of 1.0 are not (we are told) typical of IPI applications, and

if test lengths are to be kept reasonable it will be necessary to use

training programs that give mean output at or above the criterion level.

There has been a definite tendency in IPI to require relatively high

advancement ratios; typically, the value .85 is used. One might well

speculate whether this is a function of a high loss ratio combined with

a desire for a short test length, or whether it really reflects a perceived

need for a high criterion level. (For example an advancement ratio of 6/7

with the prior distribution 0(5.6, 2.4) would yield with x = 6 a posterior

Prob(n > .70) = .77 which would be just right with a loss ratio of 3.0.)

The authors of this paper do not know the answer to this question, but hope

that those within IPI will want to consider it carefully. Only through

such serious consideration can the test length problem be "solved".

Some recommended test lengths for no = .75 and four prior distributions

with EP(s) = .75 are given in Table 8. Again we have been able to specify

one generally satisfactory advancement ratio for each of the four loss

ratios. We note that the required test lengths for so = .75 are rather

larger than for no = .70. In Table 8, we find very short required test

lengths for a 1.5 loss ratio and rather long ones for loss ratios of 2.0,

2.5, and 3.0.

In Table 9, we provide recommendations for = .80 when C(s) = .80.

The results here parallel those of Table 8, except that the advancement

ratios are very high as compared to the criterion levels. This is
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relatively unsatisfactory. In Footnote 1 to Table 9, we indicate the formal

results for the prior distribution e(6.4, 1.6) and the sample result

"8.5" correct and "1.5" incorrect and also for "8.3" correct and "1.7"

incorrect. These provide very nice results for loss ratios of 2.0 and 1.5,

respectively. Unfortunately, these are unobtainable sample results. This

demonstrates that in part, large required test lengths may sometimes be

due to the discreteness, and hence, discontinuity of our possible experi-

mental outcomes. This also suggests that the precise specification of the

advancement rules may be highly sensitive to the mean value of the prior

distribution even if it is proving to be relatively insensitive to the

total amount of information contained in the prior distribution, which is

indicated by the sum of the two parameters of the Beta distribution.

For example, given the prior distribution 0(6.4, 1.6) and the

impossible sample result x = 8.3, n = 10, we have the posterior distri-

bution 0(14.7, 3.3) which, as we indicated previously, gives

Prob(n > .80) = .62 which suggests that the advancement ratio 8.3/10

might be very favorable with a loss ratio of 1.5. But suppose we had

just a slightly different prior distribution, namely, 0(6.7, 1.3) with

e(n) = .84, then the sample result x = 8, n = 10 would yield the posterior

distribution 8(14.7, 3.3) and thus, for the reasons given above, indicite

that the advancement ratio 8/10 might be attractive. This advancement

ratio is clearly more attractive than the ratio 6/7, despite the fact that

it requires three additional items, because this ratio 8/10 = 80% is closer

to the criterion level than is the advancement ratio 6/7 .., 86Z.

Because of this relatively high dependence of the results on the

expected value of the prior distribution, it seems important to attempt

some study of the variation of our results as a function of changes in
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Table 10

Recommended Sample Sizes and Advancement Scores

Io
= .80

Prior

Distribution {n) 1.5 (.60)

Loss Ratio

2.0 (.67) 2.5 (.71) 3.0 (.75)

0(6.8, 1.2) 5 (.85) 8/10(.64) 9/11(.69) 10/12 {.72)1 11/13(.76)

0(8.5, 1.5) (.85) 8/10(.66) 9/11(.70) 10/12(.73)2 11/13(.76)

0(10.2, 1.8) (.85) 8/10(.67) 9/11(.71) 9/11(.71)3 11/13(.77)

0(12.75, 2.25) (.85) 8/10(.69) 9/11(.72) 9/11(.72)4 11/13(.78)

General Recommendations

8/10(00%) 9/11(82%) 10/12(83P 11/13(85%)

'For 5/6, Prob(w > .80) = .72.

2
For 5/6, Prob(w > .80) = .73.

3
For 10/12. Prob(n > .80) = .74.

4
For 10/12, Prob(ff > .80) .75.

5For the four prior distributions, the apriori probabilities of w > .80

are .72, .73, .74, and .75. With these prior distributions and with 7/10,
the posterior probabilities of n > .80 are .41, .43, .46, and .48.
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our prior distribution. For this reason, we have in Table 10 redone our

sample size recommendations under the assumptitn that the mean of our

prior distribution is .85 instead of .80.

Surely the practitioner will find the sample size recommendations

of Table 10 to be attractive. Apparently with these prior disbributions,

test lengths need be no greater than 13 for any of the listed loss-ratios.

With the prior distributions having 4410(w) = .80, a sample size of 22 is

required when the loss ratio is 3.0.

What is happening is that we are beginning with fairly strong beliefs

that x > n so that not much data, in confirmation, is required even for

high loss ratios. In fact, even on an apriori basis, an advancement

decision would be made for all loss ratios up to avid including 2.5.

Indeed, we see that the function of the sample data here is to provide

the possibility of obtaining some information that might change the

decision to retention. For example, an observed performance ratio of

10/13 with the prior distribution B(6.8, 1.2) would give aposteriori

Prob(x > .80) = .72, and hence, the student would be retained if the

loss ratio were 3.0 (see also Footnote 5, Table 10).

We believe that the comparison of the specifications in Tables 9

and 10 have important implications for In management. When loss ratios

are high, it may well be highly advantageous to strengthen the training

program to the extent that the mean output is well above the specified

criterion level. This will make it possible to use short tests or.

alternatively will generally reduce the risk of incorrect classification.

This will, of course, be more expensive, and this investment must be balanced

out against the reduction in the cost of testing and the reduction in the

expected loss due to incorrect decision. The final Table, Table 11, looks
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Table 11

Recommended Sample Sizes and Advancement Scores

0
= .85

Prior

Distributions (:(11) 1.5 (.60)

Loss Ratio

2.0 (.67) 2.5 (.70) 3.0 (.75)

0(6.8, 1.2)1 (.85) 7/8(.62) 9/10(.70) 17/19(.73) 18/20(.76)3

0(8.5, 1.5) (.85) 7/8(.62) 9/10(.69) 17/19(.72) 19/21(.77)

0(10.2, 1.8) (.85) 7/8(.61) 9/10(.68) 17/19(.72) 19/21(.76)

0(12.75, 2.25) (.85) 7/8(.60) 9/10(.67) 17/19(.71)2 19/21(.75)

General Recommendations

7/8(87.5%) 9/10(90%) 17/19(89%) 19/21(90%)

1The apriori probabilities for w > .85 are .59, .58, .58, and .57.

2
For 10/11, Prob(a > .85 = .695).

3
For 19/21, Prob(w > .85 = .78).
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very much like Table 9 as far as test lengths are concerned. Here again

some robust length assignments are obtained, though again, the lengths for

the high loss ratios border on being discomforting. This can be corrected

by training to an average level of functioning of .90. With the prior

distribution 0(7.2, 8), we find that Prob(m > .85) = .76, apriori. Observing

6/7 yields Prob(m > .85) = .70, while 5/7 yields a value of .41. Observing

8/9 yields .77, while 7/9 yields .493. Thus, clearly, very short test

lengths are again possible if the students are trained to a sufficiently

high average standard.

Some Summary Remarks

The test length recommendations given in this paper are meant to be

taken seriously and hopefully they will soon be adopted on a provisional and

experimental basis, so that more experience can be gained while some of

the theoretical and substantive issues raised in this paper are debated. The

questions of level of functioning required to define mastery and the

relative losses incurred in making false positives and false negative decisions

require serious discussion and concensus. We also need to get some clear

picture of what kinds of distributions of outcomes are to be expected as this

determines the amount prior information available in making indiVidual

assessments. This third issue is, as we have indicated, intimately related

to the expected level of functioning that is sought in the group being trained.

Hopeful and possible outcomes of such discussions could be a consensus that:

1. In most situations a le7e1 of functioning of something less than

.85 is satisfactory. A value as low as .75 would be highly

desirable. This could be accomplished by redefining the task

domain slightly to eliminate very easy items.

6
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2. Training should be carefully monitored so that expected group

performance will be just slightly higher than the specified

criterion level. This will keep training time and testing time

relatively low.

3. The program should be structured so that very high loss ratios are

not appropriate. That is to say, individual modules should not

be overly dependent on preceding ones.

One problem that does not arise with Bayesian methods is any complication

if sequential methods are used. Items can simply be administered until

it is clear that a student will definitely, or cannot possibly, attain the

minimum advancement score. Thus with a minimum advancement score of 8/10,

testing can cease as soon as light successes or three failures are observed.

Two issues have been treated in a rather gross way in this paper and

on these important issues further research needs to be done. First it

must be recognized that while the threshold loss function we have adopted

here is a better approximation to reality than, for example, Livingston's

criterion centered squared-error loss (see Hambleton and Novick, 1973),

it is only a gross approximation to be used while better and more complicated

approximations are being investigated. Three than immediately come to mind

are:

1. A threshold loss function with an indifference region in which

there is zero loss for false positive or false negative errors.

2. A negative squared-exponential loss used with the root arcsine

transformation parameter

Y sin ya
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3. A cumulative Beta distribution loss function,

We expect that these loss functions will give somewhat different and surely

better length specifications than those obtained here, but the overall

decrease in expected loss may or may not be great. We should also remark

that these recommendations are specifically made for first time through

decisions. We have yet to consider the problem of decisions for students

repeating a unit.

Finally, we would remark that one of the important issues that we

identified at the outset of this paper has been handled in a most casual

and informal manner. To do other than this would have enormously complicated

the analysis and delayed substantially the appearance of our recommendations,

We refer explicitly to the premium on testing time within the instructional

process and implicitly to an implied trade-off between training and testing

time, A completely general analysis would consider an available time T and

an allocation of T into instruction and testing times i + t = T, so as to

maximize a payoff function which would have a (possibly differential) positive

payoff for each module successfully completed, and a (differential) negative

payoff for an incorrect decision of either type. We are reluctant to undertake

such a sophisticated analysis until such time as the operating conditions

of In are more clearly defined.

For the present paper we have implicitly adopted some guidelines which

effectively say that it is very desirable to have test lengths of 12 or

less, tolerable but undesirable to have test lengths as high as 20 and

.
discomforting to have tests that are longer than this. We have also taken

the position that a decision should not be made on the basis of prior and
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collateral information alone but that mastery must be confirmed by a test

that permits demonstration of nonmastery. As in all of the judgmental

decisions made in this paper we have been guided by counsel from experienced

IPI personnel, particularly Richard Ferguson and Anthony Nitko to whom

we are much indebted. The value of this paper will largely be determined

by the quality of the discussion engendered by it among such people.
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ABSTRACT

The decision process required for Individually Prescribed Instruction (IPI), an adaptive
instructional program developed at the University of Pittsburgh, is described. In IPI, short tests
are used to determine the level of proficiency of each student in precisely defined learning
objectives. The output of these tests is used to guide instructional planning for individual
students.

The nature and effect of errors in proficiency decisions are described and a procedure for
reducing the probability of such errors is proposed. The plan calls for a Bayesian procedure
which would incorporate prior information on the instructional program, for example the
distribution of the percentage of items answered correctly by students Such a procedure would
permit inferences about the true level of functioning of each student.

The final section of the paper prpposes two methods for implementing these procedures in an
ongoing IPI program. one approach calls for the integration of the procedure as a part of a
computer-based instructional management system, whereas the second approach describes
how the procedure can be made tractable in a typical, non-automated IPI classroom
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IMPLEMENTATION OF A BAYESIAN SYSTEM FOR DECISION ANALYSIS
IN A PROGRAM OF INDIVIDUALLY PRESCRIBED INSTRUCTION

Richard L. Ferguson
Melvin R. Novick

INTRODUCTION

The feasibility of instructional programs designed
to adapt to the mdividuat needs of learners has been
adequately demonstrated by educational systems
like Individually Prescribed Instruction (Glaser.
1968) and A Program for Learning in Accordance
with Needs (Flanagan. 1967). Although these
programs accomplish individualization in somewhat
different ways, each includes components which
can be described by the following sequence of
operations:

1. Specification of the learning objectives in terms
of observable student behavior

2. Assessment of the student's entering compe-
tencies.

3. Assignment or election of educational material::
and/or experiences fitted to the student's
individual needs.

4. Continuous assessment and monitoring of the
student's performance and progress

Since programs like IPI and PLAN call foradaptation
of the learning environment to meet individual
requirements, they necessarily rely heavily on the
systematic assessment of student progress. Glaser
(1968) has observed that, in IPI, test data serve as the
primary source of information enabling teachers to
make differential decisions regarding student 7i

1

instruction. Thus. steps (2) and (4) play a prominent
role in the successful implementation of IPI A
review of current decision-making procedures for
four selected individualized instructional programs
has been given by Hambleton (1973)

The fundamental purpose for testing in in-
dividualized instructional programs like IPI and
PLAN is to ascertain whether or not the student has
attained some prescribed level of proficiency in a
specified learning objective. Hambleton and Novick
(1973) have observed that. "Questions of precise
achievement levels and comparisons among indi-
viduals on these levels seem to be largely irrel-
evant" Because test data are used initially to place a
student at the appropriate point within an
instructional program or sequence. and thus to
identify appropriate learning materials or ex-
periences given his needs. the test models which
have emerged to serve this function are very dif-
ferent from those used for standard instructional
models. Because these tests relate a student's per-
formance on items drawn from a carefully specified
domain to a prespecified criterion or standard. these
tests have come to be called domain or criterion-
referenced tests.

It is not the purpose of this paper to contrast the
differences between norm-referenced tests and
criterion-referenced tests Suffice it to say that
criterion-referenced tests are deliberately con-



strutted so as to yield measurements which are di-
rectly Interpretable in terms of specified per-
formance standards (Glaser and Nitko, 1971). The
process of constructing such tests involves the
specification of a domain of tasks that the student
should be able to perform and the selection of
samples of these tasks representative of that do-
main. The student's competency in the skill is
judged in terms of his performance in responding to
the sample of the tasks which is drawn. Performance
on this sample is used to infer that his level of
functioning in the domain either does or does not
meet some prescribed standard.

Because student performance on tests used in IPI
and PLAN is used as the basis for making decisions
affecting placement and advancement, and because
it is crucial that these decisions be accurate, major
importance is attached to the precision with which
each person's true domain score (level of
functioning) can be related to the prescribed
proficiency level However, due to time constraints,
the tests are often comprised of a very small number
of items, usually 10 or less. Thus, the precision of
judgment from such tests must be open to question.
Because of the important role which testing plays in
the instructional decision making within IPI, im-
provement in the quality of the decision process
would be greeted with considerable enthusiasm if it
could be accomplished without a corresponding in-

crease in the length of the tests. This paper is
addressed to the problem of showing precisely how
some new developments in statistical theory make
this goal attainable. More specifically, the present
paper indicates precisely how these Bayesian
methods could be integrated into an ongoing 1PI
program, In order to lay a proper foundation, one
describing the exact nature of the measurement
problem in IPI, we propose to confine discussion to
one major component of the system, the math-
ematics program. To this end, a general de-
scription of the assessment instruments used in 11,1
mathematics is contained in the next section.

The mathematical and statistical models which
form the basis of the proposed application, and the
outline of this application, are based on the work of
Novick, Lewis, and Jackson (1973), and the ampli-
fications contained in Lewis. Wang. and Novick
(1973). Wang (1973), and Wang and Lewis (1973a.
1973b). A theoretical discussion of these methods is
contained in Hambleton and Novick (1973). The
Bayesian methods of statistical inference developed
in these papers combine direct observation
information on each student with certain
background information, to permit more accurate
decision-making than would be possible without the
use of this background information. The use of this
background information makes possible the gain in
accuracy without additional testing.

THE IPI MATHEMATICS PROGRAM

Ferguson (1970a) provides a detailed description
of the IPI Mathematics program. Highlights of that
description are provided in subsequent parts of this
section In particular, attention is given both to the
structure of the curriculum and to the test model
which plays such an important role in the
management of the program.

The Curriculum

Figure 1 conveys the general organization of the
mathematics curriculum. Ten content areas,
Numeration/Place Value, Audition/Subtraction,
Multiplication, Division, etc., are identified; each
occurring at various levels of difficulty. The ten
areas are listed in a hierarchical order that Is
followed in instruction The intersection of each
level with a specific content a va determines a unit
that consists of a set of k.ehaviorally defined
objectives or skills. Each number in the table
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indicates the number of skills in the unit. Thus, E
level-Systems of Measurement is a unit that consists
of a set of five behavior& objectives (skills) which
share a similar content but are less difficult than the
skills contained in the F level-Systems of Mea-
surement. The absence of a numberat any position
in the chart indicates that no unit exists for the
corresponding content area and level. At the bottom
of Figure 1, we have listed the specific behavioral
objectives for E level-Systems of Measurement.

The Test Model

As previously indicated, the assessment instru-
ments in IPI perform a dual role in the program,
serving both a placement and a diagnostic function.
The tests are placement oriented in the sense that
they locate a student's position in the curriculum
with respect to the skills forwhich he lacks sufficient
proficiency. but for which he has the necessary



Level

A BCD E F G

Numeration/Place Value 15 9 14 5 6 7 6
Addition/Subtraction 17 12 13 10 4 4 6
Multiplication 4 7 9 7 4 3
Division 3 4 7 9 5 6

Fractions 3 3 6 7 11 8 8
Money 1 1 5 5
Time 6 6 4 4 2

Systems of Measurement 3 6 6 5 5 6
Geometry 3 2 4 6 4 2

Applications 3 8 9 5 4 6

Behavioral Objectives

E Level-Systems of Measurement

1. Given a ruler, the student measures a line segment with the indicated degree of precision L IMIT.smallest unit
of precision 1/8 inch; line segments to 10 inches.

2. Given 20 cut-out regions that are each 1-inch squares and an illustration of a rectangular region. the student
uses the 1-inch squares to determine the area of the given rectangular region LIMIT. areas < 20 square
inches. Length of sides of rectangles must be multiples of 1 inch.

3. Given the measures of the sides of a rectangular region, the student determines the area of that region LIMIT
integral measures, one unit of measure per problem; units of measureinches, feet. yards, miles

4, Given the measure of the sides of a rectangular region, the student determines the perimeter and the area of
that region. LIMIT. At least one of the measures (length. width) must be integral; both measures must
be < 100; one measure may be a common fraction < 1 with denominator < 10;1 unit of measure per problem;
units of measureinches. feet, yards, miles.

5. Given a weight measurement. the student completes a statement to show an equivalent measurement in a
different unit of weight measure. Given a word problem that requires conversion of a given weight
measurement expressed in standard units to an equivalent weight expressed in another standard unit, the
student solves the problem and writes the answer with the appropriate label LIMIT' unitsounces, pounds.
tons.

Fig. 1. Matrix of Units in the IPI Mathematics Curriculum.
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prerequisite skills so that he can begin work. The
same tests are diagnostic in that they provide
information that identifies skills in which the student
has not achieved sufficient proficiency and also
provide insight as to specific facets of these skills on
which instruction is required. A review of the various
tests utilized in the mathematics program follows.

Curriculum Placement Tests

Upon entrance to the mathematics program, the
placement tests provide a global picture of each
student regarding his level of proficiency with
respect to the skills in each unit of the curriculum.
The data generated by the placement tests are used
to develop a profile for eac h student indicating those
units in which he has sufficient proficiency in all of
the skills and those in which he has insufficient
proficiency For example, the outcome of a
placement test might yield a profile indicating
sufficient proficiency in all of the skills in level D of
the curriculum, and insufficient proficiency in the
skills of units at a higher level of difficulty. In this
case, the student would begin work in units at level E
of the curriculum More typically, a student might
demonstrate proficiency at level 0-Numer-
ation/Place Value, level F-Addition/Subtraction,
level E-Money. level C-Time. and perhaps level D in
all other areas Such a student would probably then
begin instruction in level C-Time, this being the
lowest level in the area hierarchy at which
instruction is prescribed.

Because of the global nature of placement tests,
they must assess a very large domain of math-
ematics skills Consequently, practicality demands
that the tests include only a small number of items
on key objectives in each unit of the curriculum.
Thus, important placement decisions are
necessarily dependent on tests with a small number
of items.

Unit Pretests

Once a placement test has been used to determine
a profile for a student, a decision can be made, as
indicated in the previous section, regarding the unit
on which the student begins his work. At this point, a
unit pretest is administered to identify the specific
objectives in the unit for which the student has
sufficient (Insufficient) proficiency. Each pretest
consists of several short subtests, one for each
objective in the unit.

It is possible for a student to demonstrate
sufficient competency on all objectives in the unit. if
this were to occur, the student would continue

..t
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working at the same level, but proceed to the next
unit in the area hierarchy where ne would be given
another unit pretest. Thus, the pretest provides
additional information about a student, information
which is focused at the level determined by the
placement test.

The pretest decision can and sometimes does
override a part of the placement decision. This
occurs when proficiency is demonstrated by the
student in areas and at levels not indicated by the
placement test. Thus, the IPI testing paradigm
initially involves a two stage semisequential testing
program with the placement test largely determining
the level at which more intensive testing is to take
place.

After the unit pretest has identified the specific
skills for which the student requires instruction,
student test performance on each of these
objectives is examined by the teacher to identify
particular types of errors or patterns of errors. In this
manner, learning materials and/or experiences
consonant with the individual's needs can be
prescribed.

The typical pretest includes between six and
(preferably) ten items for each objective.Obviously,
the size of the domain of items varies with the
particular skill. Usually, however, the domain is
quite large. Thus, important instructional decisions
are often based on student performance on a small
number of items that have been representatively
sampled from a very large domain. The relative
shortness of the tests can certainly be justified from
a practical point of view. Longer tests might be
considered repressive and would certainly exceed
reasonable bounds in to rms of the proportion of time
given over to them within the total instructional
process. Thus, it would appear that the key to more
effective and more reliable decisions lies not in
increasing the length of the tests beyond, say, eight
or ten items, but rather in making better use of the
data available within the present system.

Curriculum Embedded Tests

These short "quizzes" measure the student's level
of proficiency in a single skill within the curriculum.
The written instructional material for each skill in a
mathematics unit contains two curncLlum em-
bedded tests (CETs). The tests are self - evaluation
devices used by the student as a check on his
progress as it relates to his work on a given skill.
Thus, the student who has completed several
learning activities related to the development of his
proficiency in a particular skill might take a CET to
determine whether he has attained sufficient
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proficiency at this point or whether he needs to
complete additional steps in the instructional
process.

The CET typically consists of from four to six
items. Because these short tests serve primarily as
self-checks for the student, and because no crucial
instructional decision is dependent upon student
performance on these tests, they seem to be ade-
quate for the task which they serve.

Unit Posttests

These instruments are equivalent forms of the unit
pretests. They are generally administered after the
student has concluded learning activities for all
skills for which he was identified as being

insufficiently proficient on the unit pretest. On the
basis of the student's performance on the posttest.
he is either advanced to the next unit or required to
work with additional instructional materials on those
skills for which his test performance did not indicate
that he achieved a sufficient level of proficiency A
student generally does not advance to a new unit
until he has demonstrated sufficient proficiency for
all objectives of the current unit.

As with the pretests, decisions resulting from an
analysis of posttest data rely upon tests which gen-
erally contain a small number of items. Because in-
correct proficiency decisions can be detrimental to
the student's progress, a procedure which could add
substantially to the accuracy of the decision with-
out increasing the length of the test would be most
worthwhile.

THE INSTRUCTIONAL DECISION PROCESS

In this section, the process by which test data are
used to make instructional decisions is briefly
summarized. In addition, a discussion of the nature
and consequences of decision errors resulting from
the analysis of test data is presented.

A Summary of the Decision Process

Gross placement tests which sample a broad
cross section of the important skills in each unit of
the mathematics curriculum are administered upon
each student's entry into the !PI program. Score data
resulting from these tests are used to determine a
profile suggesting the student's level of proficiency
in each content area of the curriculum.

At this point, the student completes a pretest for
the first unit in the curriculum continuum in which
his level of proficiency is insufficient. The profile
resulting from the pretest identifies those skills for
which learning materials and/or experiences are
required if the student is to achieve the specified
level of performance. During the instructional
process, curriculum embedded tests are available to
the student as a means of self-evaluation and an
estimate of progress as he works on the skills. After
he has completed work on all skills in the unit and is
satisfied that he has sufficient competency in all of
the unit skills, he is administered a posttest which
verifies his progress or identifies those skills for
which additional instruction is indicated. Once the
unit is successfully completed, the student ad-
vances to the next unit on his prescription where he
is administered a pretest and the cycle is repeated,

5

The Nature and Effect of Decision Errors

The placement tests, pretests, and posttests are
used primarily to verify that a student either has
sufficient proficiency, i.e. mastery, in a give's set of
skills or that he has an inadequate level of pro-
ficiency in those skills. Clearly, it is de:..liable that the
mastery decisions for a student be as accurate as
possible. The importance of accuracy of the mastery
decision for a student is perhaps best emphasized
by a discussion of the consequences of an incorrect
decision.

As previously indicated, the IPI tests are con-
structed by sampling items +rem the domain of items
for the objectives included on the tests. Since any
sampling which does not exhaust e population of
items for an objective can lead tc an incorrect
mastery decision and since exhaustive testing is
impossible, it is necessary to tJlerate the risk of
making wrong decisions. In an IPI context, a Type I
( a ) error occurs when an examinee has sufficient
proficiency in a skill but the outcome of the testing
suggests that he does not. As a result, he is
prescribed work lessons which may serve no sig-
nificant function. A Type II ( /3 ) error occurs when-
ever the examinee, in fact, lacks proficiency in a skill
but on the basis of test results is said to have
sufficient proficiency. The consequence of a Type II
error is that needed remedial instruction is not
provided. A Type II error is perceived to be poten-
tially more set ious than a Type 1 error since the Type
II error could easily result in the student having
difficulty proceeding through a unit and might

78



eventually lead to an impasse in instruction;
whereas, the Type I error will at worst require that
the student pursue a review-like study of skills in
which he is already proficient.

Although it is clear that the magnitude of the
consequences of an incorrect proficiency decision
for a student vailes with the direction of the error, it
is equally clear that in both cases the error may have
detrimental effects for the student. The fact that the
tests on which these decisions are based have a
small number of items per skill suggests that such
errors probably occur quite frequently. Given the
constraints imposed by a program which already
has a heavy testing component, increasing the
length of the tests is not a tractable method for
achieving increased accuracy in the mastery
decision process. However, it may very well be
possible to incorporate additional information into
the decision process and 1 ius improve the overall
accuracy of the decisions being made. It is this
hypothesis to which the remainder of this paper is
addressed.

In 1131, as in all individualized instructional
programs, decisions are focused around the
individual student. if a statistical procedure that
uses information other than that contained in the
immediate direct observations on the student is
contemplated, then a Bayesian procedure incor-
porating prior information on each student comes to
mind This information would consist of results of
the student's performance on previous instructional
units. In this way, interindividual variability on prior
test performance would be helpful in making current
decisions.

The problem with this thinking is that the entire
thrust of individualized instructicn works toward a
reduction of biterstudent variability of test results. A
student moves ahead to a new unit of instruction
only when, it is thought, he is prepared to do so.
Indeed, he is encouraged not to take the unit
posttest until there is strong evidence that he is
prepared to perform well on it. A great deal of
posttest score variability is in fact observed, but
much of it, though not all, results from unreliability
due to the necessarily short length of these tests.
Thus, realistically, there is little or no useful
differential prior information about the individual
student.

On the other hand, there is a great deal of
information available about the instructional
program Quite specific information is available
concerning the distribution of the percentage of
items answered correctly by students (Novick,
Lewis. and Jackson. 1973), and it is thus possible to
make infeiences about the true level of functioning

of each student, and the mean and standard
deviation of these true values in the population of
students. Of course, if the instructional programs
were completely efficient and the students were
without human frailties, there would be no variation
in true levels of functioning of students on posttests.
A student would remain in a unit only until that
instant at which his level of functioning attained the
prespecified criterion. Nothing approaching this is
possible with present instructional technology.
However, if we knew this were the true state of
affairs, then we would ignore individual test scores
and use our information on the group mean and
variance to make a positive proficiency decision for
all students.

In the real world of Individually Prescribed
Instruction there will be some variation in true levels
of functioning among students on posttests. The
delicate rnsnner in which background information is
combined with the direct observational data in the
Bayesian decision process, and the increment in
decision-making accuracy resulting therefrom is
detailed in Novick, Lewis, and Jackson (1973) and
Lewis, Wang, and Novick (1973).

Finally, we may note one additional source of
background information that can be utilized when,
as in IPI, testing involves joint measurement on
several skills, simultaneously. In this situation and
assuming some relationship among the skills, it is
possible to use the collateral information contained
in the t - 1 of t tests scores for each person to help
estimate each t-th test score. Thus, if a person
scored highly in t - 1 subtests and a little less highly
in the t-th, we would suspect that this might be due in
part to bad luck or carelessness, and we would be
inclined to make some adjustment in our estimate of
his proficiency on that skill. The Bayesian theory
and methods described by Wang and Lewis (1973a.
1973b) provide the rationale and prescription for
doing this.

Implementation Procedures

The decision analysis procedures employed by
teachers and students in the IPI program must not
be .-Jverly complex. Thus, the final output of the data
analysis procedures used to judge the level of
proficiency of a student must be so simple that
teachers, aides, and even students can read the
results, interpret them, and then take whatever
action is indicated. It will be permissible to use
sophisticated statistical methods, but teachers,
aides, a:.d students must not be required to
understand much more than is contained in this
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paper. In short, although it is not necessary that
teachers and students understand the details of the
analysis, they must be provided information which
facilitates their instructional decision making. In the
following section. procedures for dealing with the
preceding concerns are discussed.

The collection and analysis of data. During the
past seiiaral years, considerable investigation has
been underway into the feasibility of using a
computer as an integral part of the IPI program. A
thorough discussion of the most recent devel-
opments is available in a progress report (Block.
Carlson, Fitzhugh, et al..1973) recently released by
the Learning Research and Development Center at
the University of Pittsburgh. Earlier reports include
Cooley and Glaser (1969). Ferguson (1970b11971).
and Ferguson and Hsu (1971). The activities
described in these reports emphasize somewhat
visionary ideas for how the computer can best be
employed in an individualized program of
instruction. Although these studies include the more
conventional modes of computer-assisted
instruction, they extend tar beyond into such areas
as computer testing and instructional management.

It is in this latter area, instructional management.
that Bayesian procedures for determining pro-
ficiency decisions would best seem to reside. Work
in this area has been concerned with how the
computer can assist in the planning and subseq uent
monitoring of both short- and long-term instruction
for individual students. Thus, it would seem
appropriate to incorporate a decision-making pro-
cedure concerned with individual proficiency level
in some skill, or set of skills, as an element of the
instructional management component of the IPI
program. Specifically, the computer might be used
to receive test data on a student and combine this
with previously acquired information on other
students in this IPI program. analyze the data using
Bayesian analysis techniques, and then print out a
report indicating the confidence which one could
place in deciding that the student is proficient in a
given skill at some prespecified level of
performance. A more detailed discussion of how this
procedure might work is now provided in the context
of IPI posttests. Procedures similar to those
described below would apply for placement tebts
and pretests as well.

Development and use of a posttest profile. The
primary purpose for administering a placement test.
a pretest, or a posttest is to acquire data which can
be used to evaluate a student's instructional needs.
When a student is administered a posttest, he is
presumed to have had instruction in those skills for
which he lacked sufficient proficiency at the time he
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was administered the unit pretest. The posttest
either affirms the student's success in acquiring the
skills or calls attention to those skills in which
additional work is required before he can proceed to
the next unit. Thus, the only information which the
teacher and student need is a simple statement
regarding the level of proficiency at which the
student has performed on each skill in the unit.
Figure 2 shows an IPI posttest profile based on a test
consisting of five, eight-item subtests, each
measuring proficiency level on a particular skill.

Level E-Multiplication/Division

Skill Percent Correct

1. 87.5
2 87.5
3 75.0
4 100.0
5 67.5

Fig. 2. Sample of Posttest Profile Currently in Use
in IPI.

Presently, the posttest profile names each skill in
the unit and lists the percentage of items which the
student answered correctly. Given the sample
profile in Figure 2 and a criterion (cutoff) score of
85 %. it is likely that the studentwould be called upon
to undertake additional work in the 3rd and 5th skills
of the unit.

Under the proposed change, rather than
evaluating student proficiency solely on the posttest
results, additional data would be incorporated
within the decision analysis process, and
furthermore, the quantity reported would be an
index relating the student's estimated proficiency to
a stipulated standard, However. it should be
emphasized that although the nature of the data
reported in the student profile would change, the
procedures employed by the teacher and/or student
to judge proficiency would remain the same
Specifically. the posttest profile, which presently
contains a statement of the percentage of items
correctly answered for each skill, would be altered to
report the probability that the student has achieved
some prespecified level of proficiency in each
objective. As far as the teacher or student is
concerned, the proficiency decision process is
exactly the samejudgments are based on the



evaluation of a single number or -index" for each
skill Figure 3 provides an example of such a profile.

Level E-Systems of Mek....drement

Skill Mastery index

1 80
2 90
3 76
4 92
5 40

Fig. 3. Proposed Sample Posttest Profile Using
Bayesian Decision Analysis Procedures.

In Figure 3, the column labeled Mastery Index
actually represents a probability statement. If. for
example. the criterion or cutoff score for sufficient
proficiency is .85. the Mastery Index column gives
the probability that the student's level of proficiency
is above .85 for each skill. In this case. the mastery
index for skill 1 is .80. We see that the actual test
performance was only 75%. This might suggest. very
roughly, a probability of .50. a 50/50 chance, for the
true level of functioning being above .75. However.
the Bayesian analysis, using the collateral
information has raised to .80 the probability that the
student's level of functioning is above .85.
Therefore, if we would want to move a student on if
the odds were better than three to one in favor of his
actually being proficient, we would advance this
student since his probability of mastery is greater
than .67.

Implementation mode. A profile similar to the one
described in Figure 3 could be provided in at least
two ways. One method of delivery would require the
availability of tests which are administered by
computer Presently, test administration by
computer is very much a part of the feasinility study
underway in IN Given the existence of a unit
posttest on some Specified unit. a would seem quite
possible for sample daea generated by the computer
test to be merged witn a file containing collateral
data on student success in the system. For example.
the computer te. ; program could be designed. upon
student completion of the test. to call a subroutine
which would access the collateral data file, combine
the two sets of information. compute the mastery
indices (aposteriori probabilities), and print out a
profile similar to Figure 3. In this case, the collateral
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data would be in a file permanently maintained on
the computer and periodically updated. This
function could be performed automatically by the
computer.

Since it is very likely that many schools using IPI
will not have ready on-line access to a computer, an
alternative procedure for providing the same
decision analysts would call for the construction of
simple "Mastery Index" tables. These tables would
permit the teacher, the aide, or a student to
determine the probability that the student has
sufficient proficiency in a skill by simply entering the
table with the number of items answered correctly
on each skill of the posttest. Figure 4 serves as an
example of such a table.

Level E-Systems of Measurement

Skill 1

Number of items
answered correctly Mastery Index

8 .98
7 .93
6 .85
5 .73
4 .60
3 .34
2 .27
1 .12
0 .03

Fig. 4. Sample of Proposed "Mastery Index" Table
for IPI.

Given knowledge of the number of items which
the student answered correctly out of a possible
eight on skill 1 of the level E posttest for Systems of
Measurement. the teacher or student would enter
the "Mastery Index- table with that number. For ex-
ample. if the student responded correctly to seven of
eight items, he would enter the table in the left hand
column with the number seven and consequently
determine that the probability that the student has
the prespecified level of proficiency. say .85, is 93.
The decision as to wnether to move a student
forward or not would depend on this probability and
the relative disutilities associated with the two kinds
of errors. The simple methods for accomplishing
this are described by Davis, Hickman. and Novick
(1973).



The indices i eported in the tables would have
been generated at some earlier time and would have
included consideration of relevant prior data
regarding student success on the skills contained in
the unit. The tables would be updated on a regular

basis as increased numbers of students proceeded
through the system. thus making more prior
information available. Such an updating might
occur once or twice a year.

SUMMARY

Individua:ized learning programs like IPI generate
substantial amounts of data related to student
success on skills in the system. Given these data. A
seems reasonable to suggest that they should be
used to improve the quality of instructional decision
making. In particular. prior data should be combined
with sample test data to form a more complete
information base on which to evaluate student
proficiency. By using such data jointly, instructional
decisions regarding a student's needs as they relate
to a given skill or set of skills will be deserving of
more confidence than present decisions which are
currently based solely on the student's performance
on a short lest.

Two procedures for implementing such a plan
have been proposed. One calls for the marriage of
the Bayesian decision analysis procedures with
computer administered tests. whereas. the other
would rely on the teacher or student to consult a
Lible to translate student test performance to a
Proficiency Index.' which would incorporate both

the test data and prior data regarding student
success in the system. The ultimate criterion for
success of such a plan is the extent to which it leads
to improvements in the instructional decision
process. To this end, the next step is to implement
the procedures and evaluate their impact on
students within IPI.
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I. Introduction

1.1 Background

While the idea of developing instructional programs in our schools

to meet Individual student needs is not a new theme in American education

(see, for example, Washburne, 1922; and Wilhelms, 1962), it has only

been in the last decade that such programs have been implemented on any

large-scale basis in the schools.

The basic argument in favor of individualizing instruction comes from

a multitude of research studies that suggest that students differ in

interests, motivation, learning rate, goals, and capacity for learning

among other things; and, therefore, grouped-based instruction on a common

curriculum Is inappropriate to meet their educational needs. That change

in our schools is obvious when one notes that schools provide successful

learning experiences for only about on...-third of our students (Block, 1971).

1
The research reported herein was performed pursuant to Grant No.

OEG-0-72-0711 with the Office of Education, U.S. Department of Health,
Education, and,Welfare, Melvin R. Novick, Principal Investigator.
Contractors undertaking such projects under Government sponsorship are
encouraged to express freely their professional judgment in the conduct
of the project. Points of view or opinions stated do not, therefore,
necessarily represent official Office of Education position or policy.

2
The author would like to acknowledge the insightful comments and

constructive criticisms of Melvin R. Novick of The American College
Testing Program on earlier drafts of the manuscript. In addition,

Richard Ferguson and Roy Williams provided many useful suggestions.
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On the basis of Project TALENT data, Flanagan, et al., (1964) reported

that our current instructional programs are inadequate to handle the

lt.rge individual differences in any age or grade group. In addition,

schools generally fail to help the student develop a sense of

responsibility for his educational, personal, and social development

or to make realistic educational decisions and choices about his future.

This trend toward individualization of instruction in education has

resulted in the development of a diverse collection of attractive alternative

models (see, for example, Gibbons, 1970; and Heathers, 1972) that, according

to their supporters, offer new approaches to student learning which 4 .

provide almost all students with rewarding school experiences. These

includes Individually Prescribed Instruction (IPI) (Glaser, 1968, 1970),

Program for Learning in Accordance with Needs (PLAN) (Flanagan, 1967,

1969), Computer-Assisted Instruction (CAI) (Suppes, 1966; Atkinson, 1968;

Atkinson and Wilson, 1969), Individualized Mathematics Curriculum Project

(De Vault, Kriewall, Buchanan, and Quilling, 1969), and Mastery Learning

(Carroll, 1963, 197(7; Bloom, 1968; and Block, 1971). All of the models,

as well as many others, represent significant steps forward in improving

learning by individualizing instruction. They strive to actively involve

the student in the learning process, allow students in the same class

to be at different points in the curriculum, and permit the teacher to

give more individual attention.

In important aspects of these individualized instructional programs

such as the construction of instructional materials (Popham, 1969;

Smith, 1969), curriculum design (Wittrock and Wiley, 1970) and computer

management (Baker, 1971; Cooley and Glaser, 1969), there are substantial

bodies of knowledge. It is perhaps surprising to note then that the
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amount of information currently available on the testing methods and

decision procedures for these programs is quite limited. It is this

component that, in principle, facilitates the efficient movement of

students through the instructional program.

One reason for a lack of information is that measurement requirements

witnin the context of many of the new programs require new kinds of tests.

These are the criterion-referenced tests which are constructed and

interpreted in ways quite different from the norm-referenced tests which are

more familiar to most practitioners in the field (Popham and Husek, 1969;

Glaser and Nitko, 1971; Hambleton and Novick, 1973).

Since one of the major purposes of 'Idividualized programs is to

maximize the opportunity for all students to learn, it follows that tests

used to monitor student progress should be keyed to the instruction.

Further, they should provide information that can be used to measure

progress along an absolute ability continuum. Norm - referenced tests are

constructed specifically to facilitate making comparisons among students;

hence, they are not very well suited for making most of the instructional

decisions required in individualized instructional programs.

1.2 Criterion-Referenced Testing and Measurement

Much of the discussion in the area of criterion-referenced testing

and measurement (for example, see Block, 1971; Ebel, 1971; Glaser and

Nitko, 1971; and Hambleton and Novick, 1973) stems from different

understandings as to the basic purpose of testing in the instructIonal

models described in the previous section. It would seem that in most

cases the pertinent question is whether or not the individual has attained

some prescribed degree of competence on an instructional performance task.

Questions of precise achievement levels and comparisons among individuals
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on these levels seem to be largely irrelevant. In many of the new

instructional models, tests are used to determine on which instructional

objectives an examinee has met the acceptable performance level standard

set by the model designer. This test information is usually used

immediately to evaluate the student's mastery of the instructional

objectives covered in the test, so as to appropriately locate him for

his next instruction (Glaser and Nitko, 1971). Tests especially designed

for this particular purpose have come to be known as criterion-referenced

tests. Criterion-referenced tests are specifically designed to meet

the measurement needs of the new instructional models. In contrast, the

better known norm-referenced tests are principally designed to produce

test scores suitable for ranking individuals on the ability measured by

the test. A very flexible definition of a criterion-referenced test has

been proposed by Glaser and Nitko (1971): "...(a test] that is deliberately

constructed so as to yield measurements that are directly interpretable

in terms of specified performance standards." According to Glaser and

Nitko (1971), "The performance standards are usually specified by defining

some domain of tasks that the student should perform. Representative

samples of tasks from this domain are organized into a test. Measurements

are taken and are used to make a statement about the performance of each

individual relative to that domain." Distinctions between norm-

referenced tests and criterion-referenced tests have been presented by

Glaser (1963), Glaser and Nitko (1971), Livingston (19h), Popham and

Husek (1969), Ebel (1971), Block (1971), Hambleton and Garth (1971),

and Hieronymous (1972).

Hambleton and Novick (1973) have discussed the evaluation of criterion-

referenced tests in practical situations. In their formulation, reliabiJity

takes the form of an index indicating the consistency of_decision making

90



5

across parallel forms of the criterion-referenced test or across repeated

measurements. Validity takes the same form except, of course, that a new

test or some other appropriate measure serves as the criterion. Both

reliability and validity concepts are reformulated in straightforward

decision-theoretic terms. However, at this stage of the development of

a theory of criterion-eferenced measurement, the establishment of

cut-off scores is primarily a value judgment. [Further clarification is

provided by Hambleton and Novick (1973), Millman (1973), andBlock

(1972).]

1.3 Instructional Models Under Consideration

The major concern in this paper is with instructional models that

include a specification of the curriculum in terms of behavioral

objectives, detailed diagnosis of the entering competencies of students,

the availability of multiple instructional resources, individual pacing

and sequencing of material, as well as the careful monitoring of

student progress.

In the programs under consideration, Computer-Managed Instruction

(CMI) f.s an optional feature. Under CMI the goal is for the computer to

service classroom terminals which assist the classroom teacher in

assessing a student's strengths and weaknesses, and to prescribe

instructional sequences (Cooley and Glaser, 1969). Project PLAN and

CAI are implemented in a CMI mode whereas IFI and Mastery Learning are

not.

In summary, the goals of individualized instructional programs

developed along the general lines of the specifications above are to

enable students to work through the units of instruction at a pace
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reasonable for them, to develop self-direction and self-initiation, to

encourage self-evaluation as well as motivation for learning, and to

demonstrate mastery in a variety of skills.

Cronbach (1967) reported on three major patterns of dealing with

individual differences which provide a framework for the models considered

in this paper. Patterns of dealing with individual differences in the

school can be described in terms of the extent to which educational goals

and instructional methods are varied. In one pattern, the educational

goals and instructional methods are relatively fixed and inflexible.

Individual differences are handled mainly by dropping students from the

program when they begin to encounter difficulty. In a second pattern,

goals are selected for students on the basis of interest and potential.

They are then channeled into one fixed program or another. Individual

differences are handled by providing multiple optional programs. The

models we describe in this paper fit into a third pattern where goals and

instructional resources are individualized for the purpose of maximizing

learning.

1.4 Purposes of the Investigation

The success of individualization depends to a considerable extent on

how effectively teachers and students make decisions as to the mastery of

specific instructional objectives, the development of individual

prescriptions, the selection of instructional resources, etc. However,

various writers including Baker (1971) and Glaser and Nitko (1971) have

commented rather critically on existing testing techniques and procedures.

Relevant background for improving such a situation would certainly include

a review of the testing models of some of the more commonly used

individualized instructional programs. Such a review would assist in
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defining the kinds of decisions that are made, and the information on

which the decisions are based. This should provide a basis for developing

testing methods and decision procedures specifically designed for use

within the context of these models. (Althnugh it would be ideal to

develop a general measurement model to cover all the instructional

models, we are not prepared in this paper to advance such a model.)

The first purpose of the investigation was to provide a description

of the testing models that are currently being used in selected

individualized instructional programs. Three programs were selected

for study: Individually Prescribed Instruction, Program for Learning in

Accordance with Needs, and Mastery Learning. (These models as well as

others are also discussed by Baker (1971); however, he was concerned

with their computer-based instructional management systems which are of

only secondary interest in this paper.j These programs were selected

in this study because they are among the best known and because there

is a substantial amount of information available on each. In the

following sections, an introduction is provided for each instructional

model. The introduction includes a brief history of the program, the

content areas covered, and an indication of the extent of implemeLtatiou.

Also, a description of each instructional paradigm and details on the

testing model is provided. An attempt is made to pinpoint the decision

points in each model, spelling out the consequences of the various

possible actions in relation to each of the "possible true states of

nature."

The discussion of the models is based on descriptions found in

books, papers, and reports; on-site visits; t.nd meetings with many of

the developers. It should be noted however that programs are often

implemented by teachers quite differently than they are reported in
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the literature. Also, it should be remembered that these programs are

constantly changing; hence, it is possible that certain features of

the models are not exactly as they are described here. In particular,

it is our impression that PLAN is being implemented in a way quite

different from how it has been described in the literature. This is

because Westinghouse Learning Corporation has now taken over the

development and implementation components.

A second purpose was to compare the three programs and the four

component parts of the testing model; namely, selection of a program

of study, criterion-referenced testing on the unit objectives,

assignment of instructional modes, and final year-end assessment.

A final purpose was to briefly outline several promising lines of

research in connection with the testing methods and decision procedures

for individualized instructional programs.
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II. Individually Prescribed Instruction (IPI)

2.1 Background

The Learning Research and Develo,ment Center (LRDC) at the University

of Pittsburgh initiated the Individually Prescribed Instruction Project

during the early 1960's at the Oakleaf School in cooperation with the

Baldwin-Whitehall Public School District near Pittsburgh. Major contributors

to the project over the years include Robert Glaser, John Bolvin, C. M.

Lindvall, and Richard Cox. Initial activities concentrated on producing

instructional materials and training materials. More recently, research

and evaluation activities have assumed an increasingly important role in

Center activities.

As of 1972 the IPI program was being implemented in over 250 schools

around the country. Distribution of materials and other information on the

program is managed by Research for Better Schools, lnc. ) a United States

Office of Education Regional Laboratory located in Philadelphia. At

present, instructional materials are available in elementary mathematics,

reading, science, handwriting, and spelling.

2.2 Description of the Instructional Paradigm

While we will discuss the instructional paradigm and the corresponding

test model in the context of the IPI mathematics program, the procedures,

techniques, etc., described, are in no way limited to that content area.

In fact, it should be noted that the mathematics program as implemented

is probably somewhat different from what we describe here, since the LRDC

is constantly refining and improving the program (Lindvall, personal

communication). Fortunately, for our purposes the basic structure of the

program remains as described.
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It is instructive first of all to describe the structure of the

mathematics curriculum. Cooley and Glaser (1969) report that the mathe-

matics curriculum consists of 430 specified instructional objectives.

These objectives are grouped into 88 units. (In the 1972 version of the

program there were 359 objectives organized into 71 units.) Each unit is

an instructional entity which the student works through at any one time.

There are 5 objectives per unit, on the average, the range being I to 14.

A collection of units covering different subject areas in mathematics com-

prises a level; the levels may be thought of 11,4 roughly comparable to school

grades. For illustrative purposes, Table 2.2.1 presents the number of

objectives for each unit in the 01 mathematics curriculum.

The teacher is faced with the problem of locating for each student,

that point in the curriculum where he can most profitably begin instruc-

tion. Also, the teacher is responsible for the continuous diagnosis of

pupil demonstrating proficiency in each skill prescribed in his particular

instructional sequence as he moves along.

At the beginning of each school year the teacher places the student

within the curriculum; that is, he identifies the units in each content

area for which instruction is required. After completing the gross place-

ment, a single unit is selected as the starting point for instruction, and

a diagnostic instrument administered to assess the student's competencies

on objectives within the unit. The outcome of the unit test is information

appropriate for prescribing instruction on each objective in the unit.

In addition it is also necessary to select the particular set of resources

for the student. In theory, resources that match the individual's "learn-

ing style" are selected. Within each unit, there are short tests to

monitor the student's progress. Finally, upon completion of initial In-
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Table 2.2.1

Number of Objectives for Each Unit in the
IPI Mathematics Curriculum

11

Content Area

Numeration
Place Value
Addition
Subtraction'

Multiplication
Division
Combination of ProcAsses
Fractions
Money
Time
Systems of Measurement
Geometry
Special Topics

A

2

3

3

Levels1iCDEFG 11

10 8 8 8 3 8 4

3 5 10 7 5 2 1

10 5 8 6 2 3 2

4 6 3 1 3 1
8 11 10 6 3

7 7 9 5 5
6 5 7 4 5 6

2 4 6 6 14 5 2

4 4 6 4 1
3 2 7 9 5 3 1
4 3 5 7 3 2

2 2 3 9 10 7 9
1 3 3 5 4 5

'Reproduced, by permission, from Lindvall, Cox, and Bolvin (1970).
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struction in each unit, assessment and diagnostic testing takes place.

In the next section, we review the tests and the mechanisms for making these

decisions. Suffice to say here that it has been found that teachers differ

in the extent to which they follow prescribed decision-making rules (Lindvall,

Cox, and Bolvin, 1970).

2.3 Details of the Testing Model

Various reports over the last couple of years have dealt with the

testing.model and its. development (Lindvall, Cox, and Bolvin, 1970; Glaser

and Nitko, 1971; Cox and Boston, 1967). A flow chart of the testing model

is presented in Figure 2.3.1. To monitor a student through the program

the following tests ars used: placement tests, unit pretests, unit post-

tests, and curriculum-embedded tests. All of the tests are criterion-

referenced with performance on the tests compared to performance standards

for decision-making.

How sophisticated is the decision-making process utilizing the scores

from the various tests? According to Glaser (1968):

At the present stage of our knowledge, the decision rules
for going from measures of student performance to instruc-
tional prescriptions may not be very complex, but little
is known about the amount of complexity required, although,
the individual monitoring of student performance provides
us with a good data base to study this process.

Promising developments in the last couple of years include increased

knowledge about constructing and evaluating criterion - referenced tests, Also,

the research on branched testing strategies (Ferguson, 1969, 1971) has much

potential for improving the efficiency of the testing model. This second

point will be discussed in greater detail in a later section.

Placement Tests

When a new student enters the program, it is necessary to place LIR

student at the appropriate level of instruction in each of the conieni ,ueas.
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Figure 2.3.1. Flow chart of steps in monitoring student progress in the

IPI program. (Reproduced, by permission, from Lindvall and Cox!, 1969.)
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[Glaser and Nitko (1971) called this stage-one placement testing.]

Typically, this is done Iv administering a placement Lest which covers

all of the subject areas at a particular level (see Table 2.2.1). Factors affezt-

ing the selection of a level for placement testing of a student include

student age, past performance, and teacher judgment. Generally, the placement

test covers the most difficult or most characteristic objectives within each

area. Placement tests are administered until a unit profile identifying a

student's competencies within each area is complete. At present, the somewhat

arbitrary 80-85% proficiency level is used for most teats in the IPI system.

Scores for a student on items measuring objectives in each unit and area

in the placement test are used to define an individual progre.m for him. The

standard procedure is to assign instruction on units in which placement test

performance on items measuring a few representative objectives in the units

is between 20% and 80%. If the score is less than 209.' for a given unit,

the unit test in the area at the next lowest level is administered and the

same criterion is applied. If he passes the unit test, he receives instruc-

tion in the unit in the next level. In the case where a student has a score

of 80% or over, he is tested on the unit in the area at the next highest

level. (Further information is provided by Lindvall, Cox, and Bolvin (19T0),

Weisgerber (1971) and Cox and Boston (1967).]

For example, suppose a student were to achieve scores on level E of

60%, 90%, 60%, 60%, 30%, 309.', 25%, 90%, 50%, 10%, 0%, 30%, 30% in the thirteen

areas indicated in Table 2.2.1. It is likely that he would be prescribed

instruction at level E in the areas of numeration, addition, subtraction,

multiplication, division, combination of processes, money, geometry, and

special topics. Be would receive the level F placement tests in Once

value and fractions. If, for example, he scores 60% and 10% respeetivoly,

he would receive instruction at level F in piece value and probably at
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level E in fractions. He would also be administered the level D placement

tests in the areas of time an systems of measurement. If, for example, his

sc:xes were 0% and 40%, he woad receive a still lower placement test in

the area of time and would be prescribed instruction at level D in systems of

measurement. If he scores 85% on the level C placement test in the area

of time, he would be assigned to level D for instruction.

In order to acquire some information on the average length of the tests,

the level E placement tests of the 1972 edition of the IPI program were selected

and examined. Analysis revealed that on the average there are 12 items

measuring the objectives in each area (with a range of from six to 20).

In summary, we note that the placement test has the following character-

istics: provides a gross level of achievement for any student in the

curriculum, and provides information for proper placement of students in

the curriculum.

Unit Pretests and Posttests

Having received an initial prescription of units, a student proceeds

by taking a pretest for a unit at the lowest level of mastery on his profile.

[Glaser and Nitko (1971) call this stage-two placement testing.] A unit

pretest includes one or more items to measure each objective in the unit. A

review of the unit pretests and posttests in level E revealed that the

approximate number of items on a test is 37 (the range is from 21 to 64) and tho

average number of items measuring each objective is six (the range is from four

to seven). Lindvall and Cox (1969) report that the length of a pretest is

determined by the number of objectives in the instructional unit and by Lhe

number of items used to test each objective. No fixed number of items Lo

measure each objective is used because of the diverse naLure of Lhe

objectives. For example, they note that, "en objective like--the pupil

can solve simple addition problems involving all number combineLlonb--will
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require more items than would an objective like--the pupil must select

which of three triangles is equilateral--."

A student is prescribed instruction in each objective in the unit for

which he fails to achieve an 85% mastery level.
1

In the case where the

student demonstrates mastery of each objective, he is moved on to the next

unit in his profile, where he again takes a pretest.

The.unit posttests are simply alternate forms of the unit pretests and

are administered to students as they complete instruction on the unit. A

student receives a mastery score for each objective in the unit. He is

required to repeat instruction on any objective where he fails to achieve

an 85% mastery score. He is directed to the next unit in his profile if

he demonstrates mastery on each objective covered in the unit posttest.

Those who repeat instruction on one or more of the objectives must take the

unit posttest again before moving on in their program.

In summary, pretests and posttests are available for each unit of

instruction.. The proper pretest is administered on the basis of student's

curriculum profile, and learning tasks for each skill are assigned (or not

assigned) on the basis of a student's performance on items measuring the

skill.

Compared with students in many other types of mathematics programs,

it is clear that the student in the IPI program spends more of his time

taking tests. However, to some extent this can be justified on the

grounds that testing is an integral part of the learning process in the

IPI model. Nevertheless, there seems to be good reason for researching

techniques to reduce testing time.

1
A mastery score on each objective for a student is calculated as the

percentage of items on the test that measure the objective that the student
answers correctly.
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Hsu and Carlson (1972) point out several problems associated with the

current version of the unit pretests and posttests. The existing system

requires that every objective be tested; hence, the time a student spends

taking tests is considerable. Also, because of management and scoring

problems, feedback to the student on his results is not immediate. Further,

students are occasionally required to take the same posttest on a second

occasion. This raises a question about practice effect.

One very promising way to reduce the testing time with the correlated

result of producing better instructional decisions is suggested in the

branched testing work of Ferguson (1969, 1971). Ferguson showed that by

using a tailored testing strategy, a computer terminal to monitor the

selection of test items, and information on the hierarchical structure of the

items, he was able to significantly reduce unit testing time without any

loss in decision-making accuracy. A comprehensive review of the work in

branched testing is out of place here; suffice to say here that major

contributions to the area include Ferguson (1969, 1971), and Lord (1970)-

A review of some of the work in the area is provided by Bock and Wood

(1972).

Curriculum-Embedded Tests

As the student proceeds through a unit of instruction, his progress

must be monitored. This is done by curriculum-embedded tests (CET).

As used in the mathematics IPI program, a CET is primarily a measure of

performance on one specific objective. There are usually several test items

to measure the objective. A review of the CETs in level E of the program

revealed that there are on the average about three items measuring the primary

objective covered in the CET. The range is from two to five. If a student
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receives a score of 85%, he is permitted to move on to the next prescribed

objective. Otherwise, he is sent back for additional work and then he

takes an alternate form of the CET when he is ready.

A secondary purpose of the CET is to pretest, in a rough way, the next

objective in the learning sequence. (Objectives in a unit are arranged

into a learning sequence.) Students may pretest out of the next skill in

the sequence by achieving 85% or higher on the short test which makes up

the second part of the CET and on part one of the CET for that skill. It

would appear from a review of level E tests that there are about two items

measuring the secondary objective. In cases where a student does not need

instruction on the next skill, he can skip part two of the CET and move on

to the part two of the CET that tests the next skill he needs for his

program. This additional pretesting of an objective in the CET gives

students a chance to demonstrate mastery of new skills not specifically

covered in the instruction to that point and to eliminate that instruction

from his program.

Student Diagnosis

Once the student has been assigned to a unit of instruction and the

objectives for which he needs instruction have been identified by the unit

pretest, there still remains the problem of deciding which of several

instructional methods is "optimal" for him. That is, of the available

instructional methods for a particular instructional unit, in which of them

would a student with a known background in the program and specific goals,

interests, and aptitudes stand the "best" chance of learning the material?

Glaser and Nitko (1971) call this a diagnostic decision.
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III. Program for Learning in Accordance with Needs (PLAN)

3.1 Background

Project PLAN is a major ungraded, computer-supported individualized

instruction program in education developed by the American Institutes for

Research over the last seven years. (For background, set_ Weisgerber, 1971.)

The project was initiated by John Flanagan to handle many of the short-

comings of our educational system as revealed by Project TALENT (Flanagan,

et al., 1964).

The PLAN program is currently being used in over 70 schools with more

than 35,000 students in grades one through twelve. Instructional materials

are available in four areas: social studies, language arts, mathematics,

and science. Westinghouse Learning Corporation is now responsible for the

monitoring and marketing of Project PLAN materials. They also operate the

computer installation necessary for the proper functioning of Project PLAN

in a school.

Unfortunately, the implementation of the model in 1972-73 involves far

fewer features than was originally described by the proponents of the program

a few years ago. Nevertheless, we will describe the more elaborate version

of the program in this paper.

3,2 Instructional Paradigm

The basic unit of instruction in PLAN, called a module, is an instruc-

tional package oade up of about five behavioral objectives. It normally

takes a student about two weeks to complete a module of instruction. Also,

there are many objectives classified at the higher levels of Bloom's (1950

taxonomy that do not fit nicely into the regular modules. These.are
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named module-set objectives, and examples include concept development and

problem-solving skills. They are worked into the regular modules and prog-

ress is measured by PLAN athievement tests administered periodically through-

out the program. According to Rhetts (1970) there are more than 1100

modules in PLAN. For each module, there are several different teacher-

learning units (TLU) assigned individually on the basis of aptitudes,

interests, learning style, etc. All modules in the secondary school

curricula are coded as to whether, 1) they are part of a state or local

requirement, 2) essential for a given educational or occupational area,

3) highly desirable for that area, 4) essential for minimum functioning

as a citizen, 5) highly desirable for all citizens to know, or 6) would

make the student a particularly well informed citizen.

TLU's are coded according to: 1) reading difficulty, 2) degree to which

it requires teacher supervision, 3) its media richness, 4) degree to which

it requires social involvement and/or group learning activities, 5) the

amount of reading involved, and 6) variety of activities in the module.

There are, on the average, two TLU's for each module. Along the lines of

Dunn (1970), we will describe the most complex version of the

program--the version currently being used in the secondary school.

At the beginning of each year, a program of study is prepared for each

student. This includes a list of modules, suggested TLU's, and a recommended

sequence in the four content areas. To really provide individualized

instruction, it is necessary to know about student needs, goals, abilities,

and interests and to use the information in developing a program of study

(POS) for him. As part of the PLAN system then, the following information

is collected:
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1. parent and student educational goals

2. parent and student vocational aspirations

3. student level of achievement and vocational interests

4. student abilities (such as reading comprehension and arithmetic

reasoning)

5. past performance of student in program

6. student's learning style.

A variety of questionnaires and testing instruments have been developed

to collect the above information.

Abilities are measured each year with the Developed Abilities

Performance Test (DOT). This test consists of 18 scales (see, for example,

Jung, 1970) such as those to measure arithmetic reasoning, reading

comprehension, abstract reasoning, mechanical comprehension, and ingenuity.

On the basis of the above information, a program is developed and the

student is monitored through it by continuous module posttesting and PLAN

achievement testing. Let us look now at the testing phase of the program

in more detail.

3.3 Testing Model Details

Within a PLAN school, there exists a multitude of decisions to make on

each student. These include development of a program of study, periodic

assessment of module-set objectives, performance on the modules of

instruction, assignment of TLU's, and yearly monitoring of important

skills. The major decision points are shown in Figure 3.3.1.

Unfortunately, there is little available information on how these

decisions are made.
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Figure 3.3.1 Flow chart of steps in monitoring student progress in

Project PLAN.
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Development of a Program of Study

On the basis of DAPT scores which are matched to Project TALENT

data of people in different occupations, the students and parents select

a long range goal WAG) (une of 12 families of occupations)]. Information

on the long range goal along with parent and student information described

in the last section is used to develop a program of study. The DAPT is

also used in the determination of the number of modulee a student will

study in a year. Jung (1970) reports that on the basis of weights derived

from regression analyses, a quota is identified for each PLAN student

in each subject area. Modules are then assigned to him on the basis of

his LRG group membership until this quota is filled.

Developed Aptitude Performance Tests

These test; are given at the beginning of each school year. Informa-

tion on the length, kirds of test items, reliability and valieity does not

appear to have been published. Also, we do not know whether a different

version of the test is used in each year, or whether the same version is

used for several years. Regardless, unless comparability of the score

scales for the different versions has been carefully done, we doubt whether

the change scores (for individuals or groups) on each variable from year

to year have very much meaning.

PLAN Achievement Tests

Mastery of the module-set objectives is measured at specific points

in the curriculum using PLAN achievement tests. However, we are also

unclear on the make-up of the PLAN achievement tests. Apparently, they

are measured at "specified points" in the curriculum and the format of

these tests is sometimes something other than the paper and pencil vdriet>.
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Module Tests

When the ltudenZ feels he has mastered the materials covered in a

module, he can take a criterion-referenced module posttest which has on

it several items measuring each objective in the module. The items are

presented usually in a selection format to facilitate computer scoring.

On the basis of his performance, the computer using built-in decision rules

makes one of four decisions. If he answers all items correctly, he is

giver. a "complete" on the module and the computer print out tells him where

to go next. If he makes a "few" errors, he is given a result of "Student

Review". The computer specifies his performance on each objective and

indicates the ones he should review before beginning his next module.

Students who miss a large number of items on the test but still score

high enough to pass, receive a result of "Teacher Certify". lie is instructed

by the teacher on which objectives to review and/or restudy. lie is not

given his next module until, in the judgment of the teacher, he has mastered

all of the objectives. An alternative is to have the student repeat the

module posttest. The fourth possibility is student failure to pass

the test. In this situation, he is instructed to restudy the module with

the same TLU or another. In the case where he misses the test again, the

teacher intervenes and takes some appropriate action to clear up the problem.

Assignment to Instructional Mddes.

The basic problem was described in a discussion of the TPT program,

i.e., what particular instructional mode (or in this case, TLU), should the

student take to study the module so as to maximize his changes of learning

the material? Dunn (1970) notes, "that the computer, from a complex

set of decision rules, matches the student with specific TIMs". We wonder

what those rules would be, particularly since there is no theory of instruction

to guide in developing optimal assignment rules. To this point in time
...._ .. _

1 .I. 0
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educational psychologists have only been able to find a handful of

interactions between background variables and instructional method. A

partial answer is provided by Weisgerber and Rahmlow (1971). They noted

that teacher-learning units are based upon different assumed learning

styles of students and are guided by a philosophy of education (Flanagan,

1970) and a theory of learning (Gagnd, 1965).
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IV. Mastery Learning

4.1 Background

The mastery learning concept was introduced to American Schools in the

the 1920's with the work of Washburne (1922). However, because technology

was not de%eloped to the point that the program could operate efficiently,

interest in the concept steadily diminished until it was revived in the

form of programmed instruction in the late 1950's. (Programmed instruc-

tion was an attempt to provide students with instructional materials

that would allow them to move at their own pace and receive constant

feedback on their level of mastery.) The work by Carroll (1963, 1970)

and Bloom (1968) and Bloom's students (Block, 1971; Airasian, 1971 and

others) was instrumental in bringing mastery learning to the attention of

instructional designers and researchers.

Since Bloom's paper in 1968, a great deal of research has been conducted;

and the results suggest that the mastery learning model "can be easily and

inexpensively implemented at all levels of education and in subjects

ranging from arithmetic to philosophy to physics (Block, 1970). The

model has been used now with more than 20,000 students.

4.2 Instructional Paradigm

This model is quite different from IPI and PLAN in that it attempts

to individualize instruction within a group-based instructional

environment. The curriculum is organized into units of instruction

defined by homogeneous clusters of behavioral objectives. For each

unit one or more criterion-referenced tests is used to measure mastery.

Individualization is handled via supplemental materials, feedback,

and corrective techniques applied to students who do poorly on the

posttests.
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Mayo (1970) in describing the mastery learning model notes that:

1. Students are made aware of course and unit expectations, so that

they view learning as a cooperative rather than as a competitive

venture.

2. Standards of mastery are set in advance for the students, and

grading is in terms of absolute performance rather than relative

performance.

3. Short diagnostic tests are used at the end of each instructional

unit.

4. Additional learning is prescribed for those who do not demonstrate

unit mastery.

5. Additional time for learning is prescribed to students who seem

to need it.

The mastery learning mode) is less impressive in scope than PLAN, and

the requirements for an effective testing plan are less stringent than with

IPI or PLAN. Features of mastery learning appear to be that it is easily

implementable, does not require the use of a computer, and is appropriate

for almost any content area. Also, if mastery learning is carried out

properly, previous research suggests that students will achieve higher

scores and have more interest in school and a better attitude toward school.

Unlike the other two models, with mastery learning much of the work has been

on research related to the correctness of the model of school learning.

An extensive number of content areas have been studied.

It should be noted that there are many variations on the basic mastery

model as originally proposed by Bloom (1968). Some of them me summatized

by Block (1971), and an example would be the work of Kim (1971).
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4.3 Test Model Details

Block (1971) notes that, "To individualize instruction within the

context of ordinary group-based instruction, mastery learning relies

heavily on the constant flow of feedback information to teacher and

learner." It does not seem however that there is as much testing in

mastery learning as in IPI or PLAN. A flow chart of the testing component

is shown in Figure 4.3.1.

The mastery learning testing model as described by Airasian (1971)

represents a special case of the IPI testing program. There is no place-

ment testing, and unit pretesting and curriculum-embedded testing are not

emphasized. Unit posttesting and final assessment represent the two major

kinds of testing in the program. In the spirit of Scriven (1967), these

two areas are known as formative and summative tests. It should be noted,

however, that formative tests or unit posttests, as they are called in IPI,

are not used for grading. They are used for diagnosing learning difficulties

only.

Formative Tests

A formative test is designed to cover the objectives over n short unit

of instruction in the mastery learning program. It is used to determine

whether or not a student has mastered the material and to serve as a basis

for prescribing supplemental work in areas where the student is weak

(Airasian, 1971). Implementers of the mastery learning model have set

the passing standard anywhere from 75% to 100%. There is no set number of

items or format suggested to measure each objective; however, there is a

suggestion that instructional decisions are made on the basis of responses

to individual items.

The formative tests in mastery learning represent the key to indt-

vidualizing instruction since it is on the basis of these scores that
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Figure 4.3.1 Flow chart of steps in monitoring student progress in a typical

version of a mastery learning model.
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individualization of instruction can take place. Units are kept small

so that unit testing takes place frequently to increase the effectiveness

of the individualization of instruction component of the program.

Summative Tests

The primary purpose of the summative Lest in the mastery learning

model is to grade students on the basis of their achievement of course objec-

tives. The items in the test are keyed to objectives and representative of

the pool of course objectives. A criterion-referenced interpretation of

the scores is recommended. It is proposed that cutting points be located

on the ability continuum and grades should be assigned on the basis of a

student's position on the continuum and not relative to other students in

the course. A norm-referenced interpretation of the scores is also possible.

Final COmwents

Mastery learning is probably the least different from traditional

instructior since the principal instruction is always group-based and

final grades are assigned. (However, it is expected that because of various

features built into the program that the final assessment testing will not

be as threatening a situation for the student as it is in more traditional

prOgrams.) Differences with traditional instructional models include

features such as individual pacing, and the big difference is the use of

frequency tests on small units of instruction to diagnose learning problems.

Important features are the feedback/correcting-review techniques. It

would appear, however, that there is little in the way of sophistication

concerning the testing model. For example, there appears to be no

guidelines for determining the optimum number of items to measure each

objective on a unit posttest. An exception is the excellent work of
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Block (1970) in investigating, among ocher things, the problem of setting

cutting scores on criterion-referenced tests to separate students into

two groups--masters and non-masters. His results suggest that setting

cutting scores high (95%) may be best for cognitive learning but in the

long run positive attitudes and interest in the subject are less likely

to develop. With a reduction in the cutting score to 85% there was a

reduction in cognitive learning, but selected affective outcomes were

maximized.

f
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. V. A Comparison of the Testing Models

5.1 Introduction

In the three previous sections we have highlighted the basic testing

and decision - making features in three individualized instructional

programs--IPI, PLAN, and Mastery Learning. Within all three models,

instruction is self-paced although mastery learning is somewhat more

structured since the initial instruction on a unit is group-paced. With

each of the models, the content is organized into units or modules.

Canerally, in IPI and ML the student is expected tc demonstrate mastery

on all the units before completing the program of study although by his

performance on unit pretests, it is possible for him to avoid instruction

on any of the units. (One variation that does come up is the availability

of "enrichment materials" which are an optional part of the curriculum.)

In PLAN, at any grade level there are far more units than any student could

or would ever want to master. Thus, it is first of all necessary to

define a content domain of study for each student.

In the remainder of the section, we shall limit discussion to testing

and decision- making issues. In order to develop a framework for the

discussion, we have chosen to focus on the following issues:

1) selection of a program of study;

2) criterion-referenced testing on the unit objectives;

3) assignment of instructional modes;

4) final year-end assessment.

These represent the extent of the decision paradigms within the

three models. The importance and sophistication used in handling each

component varies from one model to another.
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5.2 A Compendium of Decision Paradigms

Selection of a Program of Study

A program of study is that collection of units which a curriculum

designer deems necessary for the appropriate education of the student.

All three models are designed for utilization with a curriculum

defined in terms of behavioral objectives arranged into blocks, units, or

modules around a common topic or theme. Generally in IPI and ML, students

are expected to demonstrate mastery in all of the available course

objectives. The available course objectives define the program of

study for the student. However, on the basis of high pretest results

students may avoid instruction of selected units of instruction.

In PLAN, each student receives a unique program of study. The more

advanced the students the more varied their programs of study become.

For reasons described above, selecting a program of study for a

student in IPI or Mastery Learning is relatively easy. The decisions to

be made reduce, basically, to determining whether students have mastered

particular objectives. They will receive instruction only on course

objectives they have not mastered. In IPI, placement tests are used

to determine the level of instruction in each area for the students.

Here the error of giving the student credit for units he has not mastered

(a false-positive error) seems to be somewhat more serious than

mistakenly assigning him to instruction he does not need (a false-

negative error). This follows since a student has a second chance to

demonstrate mastery of the objectives in a unit through the unit pretest

if he is mistakenly assigned to study a unit he has already mastered.

On the other hand, to incorrectly assign credit for mastering a unit

to a student, particularly if it is an important unit, will plague him

in his future studies.
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In theory at least in the PLAN program, developing a program of study

is a complex affair. Done once a year it requires a wealth of information

described in section 2.3 to develop the program. The danger of locating

a student in the wrog program because of misjudgment on the part of the

parents, teachers, or the student or because of a "less than 100% prediction

system" are great; however, this is the same risk we take with selection of a

program in a traditional school. This is particularly serious in the high

school where there is more choice than in the elementary school programs.

However, the flexibility of the PLAN program makes switching from one

program to another easier.

Criterion-Referenced Testing on the Unit Objectives

There are three kinds of testing appropriate here: unit pretesting,

unit posttesting, and curriculum-embedded testing. All three kinds of

testing are used in IPI and PLAN although unit pretesting is not stressed

in PLAN. The possibility existed for all three kinds of testing in

Mastery Learning; however, unit pretesting is not emphasized and a student

can avoid the curriculum-embedded testing by passing the unit posttest and

thus avoid the remedial instructional materials. (Also, it is quite

possible that curriculum-embedded tests are not available in the remedial

materials.)

Let us briefly look now at the losses involved in making different

kinds of decisions. It should be recalled that the unit tests (or module

tests) measure performance on each objective or skill with several items.

On the unit pretests, a student receiving credit for non-mastered objectives

will likely be "caught" on the administration of the posttest and correct

instruction can be assigned at that time. However, to the extent that

these objectives are prerequisites to others in the unit we have a case

of instructional mismanagement. (Perhaps, this is a place where Bayesian
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statistics might be helpful in producing an "improved" profile of scores

across objectives measured by the unit pretest. This would undoubtedly

improve the overall decision - making accuracy. Likewise this strategy

could be used on the unit posttests.)

To assign a student instruction on the basis of pretest score results

to objectives which he has previously mastered will undoubtedly prove to

be frustrating to him; however, it should be noted that the majority of

errors of this type occu' because stduents are close to the cutting score.

Thus, the problem does not seem to be one that needs to be taken too

seriously.

Receiving credit for non-mastered objectives on the posttest to the

extent that the objectives are prerequisites to others in future units will

interfere with the rate of learning at that point. This error seems to be

less serious in terms of program efficiency if the objectives are terminal.

Failing to receive credit for mastered objectives would seem to be less

serious since the student could move through the remedial materials quickly

and retake the test.

Since any decisions on the basis of curriculum-embedded test score

results affect the student for only a limited amount of time and there

exist checks on any decisions with the unit (oi module) posttest, there

is little concern for developing more appropriate testing decision guide-

lines at this level.

Assignment of Instructional Modes

An integral component of nearly every imlividualized instruction pro-

gram is the feature whereby there exists several alternate instructional

modes for the various units of instruction that can be assigned in some

optimal way to students. In theory anyway, with IPI and PLAN, past perform-

ance and background aptitude variables are: used to assist the students in
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selecting the "best" mode of instruction. With Mastery Learning, this

feature can be operationalized following the group-based instruction and

the unit posttests. It is at this point that decisions on the proper

corrective feedback techniques to use need to be made.

Investigators of the possible interactions between instructional methods

and aptitudes are conducting what has been termed Aptitude-Treatment

Interaction (ATI) research (Cronbach, 1967). Disappointing is the fact that

while nearly all developers of individualized programs include this feature of

utilizing ATI results in assigning instruction, there are few real demon-

strations of significant interactions between aptitudes and instructional

modes (Bracht, 1970; Cronbach and Snow, 1969). Authors such as Glaser

(1972) have attempted to explain these results and suggest some new

directions for this line of inquiry. However, it woull appear that we are

far from a "theory of instruction" to guide the instructional decision maker

in the assignment of "optimal" instructional modes to students.

The benefits (assuming equal treatment costs) of the ATI classifica-

tion scheme for improving the quality of instruction depend directly on

the differences among the slopes of the regression lines for predicting

criterion scores with different aptitude variables in the different imaruc-

tional modes. The bigger the difference in slopes the greater is the

potential benefit to the student for assigning one instructional mode or

another. However, in looking at the overall benefits and losses of such a

system, it would BOOM that the appropriate baseline for comparative varpuu041

would need to be data derived from a traditional instructional program.
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Final Year-End Assessment

This particular feature seems to be handled in much the same way in

IPI and PLAN. Information is reported on the number and nature of units

that a studera has mastr.red. Little or no information is provided by the

school to students and parents that could be used for norm-referenced

assessment. In the mastery learning model, a score is reported to measure

achievement on the year-long activities. Both norm-referenced and

criterion-referenced interpretations are possible.
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VI. Some Directions for Further Research

6.1 Concluding Remarks

A review of IPI, PLAN, and Mastery Learning programs as well as many

other objective-based curriculum programs not reported in this paper re-

veals that there are many important questions remaining to be answered

in regard to individual assessment models. In this concluding section

a few of the more important problem areas are discussed.

In order to develop an instructional model that is sensitive to.

individual needs, abilities, interests, and goals in a way that will

allow the student to maximize his learning, we need a theory of instruction.

A theory of instruction should set down rules on the most efficient way

of achieving knowledge (Sruner, 1964). This theory would provide guidelines

on how to'prescribe instruction to increase learning. One paper that

addresses the problem is Groen and Atkinson (1966). Current reports on the

related topic of aptitude-treatment interactions are by Cronbach and Gleser

(1965), Cronbach and Snow, (1969), Brecht (1970), and Glaser (1972).

In making decisions on the basis of criterion-referenced test scores,

one assumes a good match between items and the behavioral objectives

they are intended to measure. To the extent that test items do not

accurately measure the objectives, any decisions based on teat performance

will be inaccurate. To date a satisfactory methodology for item validation

does not exist although several useful papers provide partial solutions

(Dahl, 1971; Rovinelli and Rambleton, 1973).

A theory of criterion-referenced tests and measurements is also

needed to guide the users of the tests in the context of programs

1 2,1
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described here. This theory should probably be based on a threshold loss

function rather than a squared-error loss function as has been done in

classical test theory (Lord and Novick, 1968; liambleton and Novick, 1973).

This theory would include reliability, validity, test scoring, and item

validation procedures for criterion-referenced tests. It would also provide

guidelines and techniques for setting test length' and cutting scores, and

allocating testing time. A recent paper by Millman (1973) provides some

excellent guidelines on this latter set of problems.

Another problem which has to be reckoned with for criterion-referenced

tests is an instance of the bandwidth-fidelity issue (Cronbach and Gleser,

1965). When the total testing time is fixed and there is interest in

measuring many competencies, one may be faced with the problem of whether

to obtain very precise information about a small number of skills or loss

precise information about many more skills. Time allocation algorithms

(analytical procedures for deciding how many items on a test should measure

each objective) of a rather different kind than those presented by Woodbury

and Novick (1968), and Jackson and Novick (1970) will be required. The

problem of how to determine the number of items to measure each skill so

as to maximize the percentage of correct decisions or some similar measure

of overall decision-making accuracy on the basis of test results has yet to

be resolved.

Estimation of mastery is a problem that is encountered frequently in

individualized inatructional programs. Bayesian methods have been

suggested (Hambleton and Novick, 1973), but there has been no empirical

demonstrations of their usefulness in this context nor are guidelines

for the use of Bayesian methods available at the present time Prior

information for a Bayesian solution might include student mastery scores
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em other skills covered on the test or student performance on skills

measured on previous tests. (In the case of posttesting, pretest

information could be used as the prior.) Also, just as data from

other examinees can improve the precision of estimation of achievement

in a norm-referenced testing situation for an indiNIdual (Lord and

Novick, 1968), so perhaps the same can be done with criterion-

referenced measurement problems.

Within many objective-based programs the strategy of branched testing

would seem to be an appropriate technique, at least in situations where

the objectives in a content area can be arranged into hierarchical

sequences. Some of the practical problems have been resolved in the

Pittsburgh IPI Program so that the technique can now be used on a limited

basis. Nevertheless, many problems remain before adoption should or can

proceed with other programs. For example, it would be necessary to develop

a non-automated modified version of branched testing for schools without

computers. Also, we need to know much more abort starting places, step

sizes, storping rules, etc., before we can effectively use branched

testing in an instructional setting.
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A Primer on Decision Analysis for Individually Prescribed Instruction 1

Charles E. Davis James Hickman
The University of Iowa The University of Wisconsin

and

Melvin R. Novick

The American College Testing Program
and

The University of Iowa

1. Introduction

If you are lucky, and certain that your luck will hold, you should read

no further. Our subject is decision making and those who are inherently lucky

will have no need to attempt to take advantage of a logical system for decision

making. However, we feel that logical thought has been successful in so many

areas of human activity that it deserves a chance even in those areas where

arbitrary rules or intuition seem to have prevailed, and perhaps been moderately

successful. In particular, we feel that the implementation of Individually

Prescribed Instruction can be given a greater payoff if a coherent system of

decision making is incorporated into the instructional sequence to provide a

supplement to the experience-honed judgment of the classroom teacher.

In the currently popular language of systems engineering, the decision

making process might be viewed as a black box. The black box contains an

input hole for prior information about the environment in which the decision

will be made and evaluated, a second hole for new experimental results designed

1The research reported herein was performed pursuant to Grant No. OEG-
0-72-0711 with the Office of Education, U. S. Deperment of Health, Education,
and Welfare, Melvin R. Novick, Principal InvestigaLor. Contractors under-
taking such projects under Government sponsorship are encouraged to express
freely their professional judgment in the conduct of the project. Points of
view or opinions stated do not, therefore, necessarily represent official
Office of Education position or policy. We are grateful to Nancy S. Peterson

for carefully reading and correcting this manuscript.
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explicitly to cast more light on the uncertain environment, and finally a hole

for the decision maker's preferences for the possfu.e consequences of decisions.

The output of this black box is a decision or action that will ultimately

lead to a distel"...ion of consequences that will, hopefully, be high on the

decision maker's preference scale. Our business will be to get enough

of a look at what goes on inside the black box so that we can see how the

teacher and student can use prior information, experimental results, and

preferences in a reasonable way to generate decisions having favorable

consequences.

Building an all-purpose black box for decision making has been a major

project in recent years. Contributors to the project have included economists,

mathematicians, philosophers, psychologists, and statisticians. It would

take a major treatise to adequately trace this project. We must, therefore,

limit our survey to thee major references in psychology and education relevant

to our task. Those elements of decision analysis which require that existing

information about the process under study be quantified in order that new

experimental information may be coherently combined with the existing

information, have already been persuasively presented in the literature of

psychology and education [Edwards, Lindman, and Savage (1963)). However, the

requirement that preferences for various possible distributions of consequences

be formulated coherently and expressed as a numerical valued utility function,

has not been emphasized in the literature of education with the singular

excep'ion of the prophetic text, Psychological Tests and Personnel Decisions,

by Cronbach and Gleser (1957, 1965).

Many decision makers in education may feel that business managers, with

the market at hand to evaluate the outcome: associated with their decisions,

are in a more favorable position to make value comparisons among the
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distributions of consequences ..han they are. For example, the values attached

to the consequences of a decision to implement a spezific education program,

or to advance or retain a particular student at e given 14rel, seem to them

to defy simple quantification. Such decisions appear to have so many

possible ramifications that to formulate preferences with any degree of

consistency is simply impossible.

Nevertheless, it is our position that most data-collecting activities in

education are designed to influence decisions. In fact, to simply collect

data without the objective of ultimately modifying a co:le of action, would

seem wasteful. We further assert that despite all the perplexities, decisions

are regularly made in education based on an informal mixture of recently

collected information, prior information, and the preferences of the decision

maker. If these decisions are to be rational in the sense that they are

derived from a logical program for decision making that provides for the input

of prior information, new data, and preferences, we claim that decision theory

is required. There is no magic in the formal structure of decision theory.

The theory contributes only what mathematics does to any problem; an orderly,

systematic, and precise framework for formulating a problem, plus the economy

of mathematical reasoning in tracing the consequence.: of the formulation.

The main difficulty in implementing decision theory arises from the

necessity to quantify basically subjective or personalistic quantities, and

this difficulty is real. However, we believe that within the framework of

some of the newer and very highly structured modes of instruction, it is

possible to provide relatively simple yet conclusively meaningful methods of

decision analysis. The decision machinery that we shall build will be

appropriate for a wide band of decision problems. However, we will consistently

illustrate the ideas with examples from individualized instructional procOnres.
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2. Fundamental Ideas and Notation

The main purpose of this section is to illustrate the rudiments of

decision analysis with a variety of straightforward examples. Thus, we

begin Section 2.1 with a rather trivial example. In later sections, this

example will be modified and extended to make it both more realistic and

interesting.

2.1 The Basic Example

The environment of our example is very simple. A student has either

mastered or not mastered the topics in the current unit of his individually

prescribed instructional program. The state of the student being a

nonmaster will be denoted by 01 and the state of his being a master will be

denoted by 02. Two actions are open to the decision maker, who could be

the teacher or even, it some arrangements, the student himself. The decision

may be to retain the student for additional work at the present level of

his prescribed program. This "retain" decision will be denoted by dl. The

complement of this decision is to advance the student to the next unit.

This decision will be denoted by d2.

We now identify the three basic inputs into the decision analysis.

(a) Prior information, In Individually Prescribed Instruction, a

student begins a unit of instruction only when he is deemed to be prepared

for that unit. For this reason, the variation in pJsttest results tend to be

relatively small, except to the extent that they are due to sampling variation.

Therefore, the main input of prior information will involve our beliefs about

the relative success of the instructional unit with qualified entrants.

Thus, on the basis of an examination of the success which other students

have had on this training unit, and before administering a test at the end of

the present unit, the decision maker assigns prior probabilities to the

two possible states.
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Probability p(0)

Table 1

State of the Student

8
1

(nonmaster) 0
2

(master)

.4 .6

5

This information is relevant to the decision under consideration and to

ignore it is to waste useful facts.

The symbol p(e) denotes the prior probability mass function. This

symbol will continue to play the same role throughout our discussion.

(b) Experimental plan. The decision maker may ask the student one

test question to learn more about which state prevails. The result of this

short test will be denoted by X . If the student answers correctly, X = 1,

and if he answers incorrectly, X = 0 . The probability assignments to these

two outcomes, if the mastery state is known, is given in the following short

table where p(x[0) = PrIX = x101 is the probability mass function of correct

(x = 1) and incorrect (x u. 0) responses given that the mastery evel is

known to be e .

Table 2

p(x10)

x = 0 (wrong) x = 1 (right)

0
1

(nonmaster) .8 .2

e
2

(master) .2 .8

This table states that if a person is a master, then the probability that he

will give a correct answer is .8 and the probability that he will give a

wrong response is .2. If he is a nonmaster, the probabilities are reversed.

Note that those are probabilities of experimental outcomes Aven the true

state of the student (master, nonmaster).

139



6

(c) Preferences. The decision maker can make one of the two types of

errors. If he retains the student at the current level when, in fact, the

student is a master, the student will probably repeat the current unit with

only minimal gain. On the other hand, if the student is advanced when he has

not mastered the topics on the current level, ultimately he may have to repeat

both the current level and the one to which he had prematurely been advanced.

With these facts in mind, the decision maker designates the nonnegative loss

function 1.(d, 0) defined in Table 3.

Table 3

1.(1, e)

e
1

(nonmaster) e
2

(master)

d
1

(retain) 0 1

d
2

(advance) 2 0

In specifying a loss function of this type, the decision maker assumes that

no loss occurs if a correct decision is made and that the loss associated

with advancing a nonmaster is twice that associated with retaining a master.

We do not suggest that this simple loss function is appropriate in all or

even any situations. However, the simple assumptions seem realistic enough

to maintain our attention for a while.

Three reasonable decision rules for selecting decisions d1 or d2, after

observing the test score, are possible.

Table 4

Rule

6
1
(x)

6
2
(x)

6
3
(x)

x 0 (wrong)

d
d1

d
1

d
2

x 1 (right)

d
1

d
2

d
2
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In this trivial example, decision rules 61(x) and 63(x) really tell us to

ignore prior information and the current test result; in the case of 61(x)

to take action d
1

(retain) invariably, and in the case of 6
3
(x) to stick

with action d
2

(advance). Nevertheless, each is a serious candidate

because certain loss structures and prior probability distributions could

make one of them the preferred decision rule.

There are two ways that the analyses carried on within the black box

labeled "decision process" have historically been organized. The first,

which is called normal form analysis, involves a three step process.

(1) Compute the average or expected loss for each ordered pair (6i, 0j)

composed of a decision rule 6i and a state parameter value 0.1 . This

averaging is performed with respect to the probability distribution of

possible experimental outcomes, p(xly.

The expected value that emerges from this computation is called a risk

function and it is denoted by R(& , ej). As the notation suggests, it is a

function of both the decision rule Si and the state parameter 0, . In

symbols, we have

R(6 i, 0 ) = E1.46
i
00, 0 11)(x10.)x

where i indexes the various decision rules and j identifies the various values

of the state parameter 0 . Once we have the risk function, we have the

expected loss for each possible (Si, 0.) pair, and can possibly decide that

a decision rule is good (bad) if its risk is small (large) for all values

of ej . (2) This kind of analysis, however, is typically inconclusive

so we must compute the average or expected value of the risk function for

each decision rule. This averaging is done with respect to the prior

probability distribution of the state parameter go . This
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expected value. is called the Bayes risk function'and will be denoted by

r(6i, co), where the symbol p is inserted to stress that the Bayes risk depends

on the prior probability distribution. This recipe may be expressed in

symbols as

r(6 P) = ER(6 , 0 )p(til )

The effect of this averaging is to weight the effect of a decision rule

highly for those values of e that we think, apriori, are highly probable

and, hence, important to consider. (3) With this computation completed for

each decision rule, we select and subsequently use the decision rule that has

the smallest Bayes risk.

Now let 116 carry out this three step normal form analysis using the

losses and prior probabilities from our example. First, we will compute

the risk of decision rule 62 when the true state of the person is 81 .

Recall that with 6
2'

we retain the student if x = 0 and advance him if

x = 1 . The risk is

R(62, 81) = EL[62(x), 01)p(x101)
X

tbs2(0), 01)p(0101) + L[62(1), 00p(1101)

i.e., the risk of using decision rule 62 when the true state is 01 is the

simple average or expected loss for the (62, 01) pair. The expectation is

performed with respect to the probability distribution p(x101) of the two

possible test scores x = 0 and x or 1, when it is given that the student is

a nonmaster (i.e., 9 = 01). Let us evaluate this risk. From Table 4, we

know that 82(0) = d1 and 82(1) = d2 . Thus,

R(62, 81) . Loy e1)p(0181) + L(d2, el)p(ilei) .
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From Table 3, we have 1.{d,, 01) = 0 and 1.02, 01) = 2; from Table 2, we

have p(01e1) = .8 and p(1101) = .2. Thus, using the symbol * to indicate

multiplication, we have

R(62, 01) = 0 * .8 + 2 * .2 .4 ,

i.e., when the true situation is el, decision rule 62 has a risk (expected

or average loss) of .4. Similar computations have been made for the

remaining (61., ei) pairs. The computations have been summarized in Table 5.

Table 5

State Result

R p e )

P(xle)

EMS
i(x), j]p(x10.)

x

6
1
(x) 6

2
(x) 6

3
(x)

81
x = 0 .8 0 * .8 0 * .8 2 * .8

x = 1 .2 0 * .2 2 * .2 2 * .2

ROL, 01) .4 2.0

8
2

x = 0 .2 1 * .2 1 * .2 0 * .2

x = 1 .8 1 * .8 0 * .8 0 * .8

Wit 82) 1.0 .2 0

If we knew that 01 (nonmaater) prevailed, decision rule 61(x) which

always retains the student would minimize the risk function. It has an

expected loss of zero which is as good as one can do. If we knew that 82

(master) prevailed, decision rule 6
3
(x) which always advances the student

would minimize the risk function. Again this rule would have no risk.

Of course, if we knew which state prevailed there would be no need.to apply

143



10

decision analysis to the problem. At this point, none of the three decision

rules are judged to be uniformly superior, i.e., superior for every state of

nature. If one were, we would certainly adopt it, but none is, so we must

find some way of choosing the best decision rule. We, therefore, move to

Step (2) in normal form analysis before identifying the winner. The

computation of the Bayes risk must now be made for each of the three decision

rules. The idea is simply this. We do not know the true state of the person,

but we do have a prior opinion concerning the true state. Therefore, it makes

sense to average the risk for each decision rule with respect to our prior

opinions, in effect, to put more weight on those values of 0 that seem more

probable to us. For example, to compute the Bayes risk r(6, p) for 62 (the

average risk with respect to our prior probabilities for 01 and 02), we

compute the following:

r(62t. p) 2' R(62, 01)p (03.) R(62, 02)p(02) .

Substituting values from Table 5 and Table 1, we have

(.4 * .4) + (.2 * .6) = .28 .

The computations of the Bayes risk for 61 and 63 are also easily made and

are given, together with those for 62, in Table 6.

Table 6

p(e) R(6
1°

O)p(0) R(62, e)p(e) R(63, 8)p (e)

e
1

.4 0 * .4 .4 * .4 2 * .4

0
2

.6 1 * .6 .2 * .6 0 * .6

r(6i, p) .6 .28 .80
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The final step in normal form analysis directs us to select action

rule 6
2
because it has the smallest Bayes risk. Thus, we have stated and

exhibited in detail a precise and coherent procedure for decision-making

in the presence of uncertainty. We have further demonstrated a simple

application in the context of Individually Prescribed Instruction. To see

that the choice of decision rule really depends on prior probabilities,

the reader should redo step (3) in the analysis first with p(81) .1,

0)2) - .9, and then with p(01) = .9, p(02) = .1.

A second way of organizing the analysis within the decision process

black box is called extensive form analysis. Since this type of analysis

has some computational advantages over the normal form, our subsequent

illustrations will, with one exception, employ extensive form analysis.

Extensive form analysis also involves a three step process.

(1) Determine the posterior probability distribution of the state parameter

0, given the experimental result x . That is, we must determine

p(OIx) = p(x10)0(0)/P(x), where p(x) EP(xle)0(0) is the unconditional
$

probability mass function of X The posterior distribution p(81x) summarizes

our knowledge and beliefs about $, incorporating both our prior beliefs and

the sample information. (2) Compute the expected value of the lass function

for each decision rule with respect to the posterior distribution of $ .

That is, we must compute EL(6i, 0)p(01x) for each decision rule. (3) Select

0

the decision that will yield the smallest posterior expected loss in Step (2).

The advantage of extensive form analysis arises in Step (2) and is a

bit hard to appreciate when expressed only in words. The heart of the

matter is that Step (2) does not have to be carried out for every possible

value of X . If we adopt this system, we can wait and perform Step (2) only
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for the result x that is actually observed. Once x is observed, the decision

rule 6 specifies the decision d
i

to be made, and the losses under each state

0 can be taken immediately from Table 3.

The amazing thing is that under very general conditions, normal, and

extensive form analysis will lead to the same decision. This point will be

illOtrated in our example. Later, a mathematical argument will be presented

for those who can only be persuaded by such demonstrations (Raiffa and

Schleifer, 1961, p. 15).

The first step in extensive form analysis requires us to determine the

form of the posterior probability distribution of $ . For our example,

we will do more and actually exhibit the two possible posterior distributions.

But first, we need to exhibit the joint probability distribution of X and 0,

and the marginal distribution of X . These probabilities are given in Table 7

where the entries in the body of the table are the joint probabilities,

and the entries in the margins are the marginal probabilities. In computing

Table 7, we have used 0(0) from Table 1 and p(x10) from Table 2.

01

02

Table 7

p(x10)P(0) P(x, e)

x o x - 1 p(o)

.32 .08

.12

--_
.48

p(x) .44 .56

.40

.60

Then the posterior probability distribution of 0 for given values of x

is given by Bayes Theorem p(61x) p(x, O) /p(x) . These conditional prob-

abilities for 0 given x are summarized in Table 8. Note that the conditional

distribution of 0 given x 0 is very different from that given x 1 .
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6
2

Table 8

p(61x)

x = 0 x = 1

.73 .14

.27 .86

1.00 1.00

13

The second step in extensive form analysis calls for the computation

of the average or expected value of the loss function for each decision

rule with respect to the posterior distribution of 6 [i.e., we must compute

6)p(OIx)]. We will carry out this computation for each of the three

decision rules specified in Table 4. Suppose x = 0. Then from Table 8, we

see that p(011x - 0) .73 and p(02Ix = 0) = .27. If we adopt 61, then we

shall make decision d1 when x = 0 (see Table 4). Thus, if 6 = el, our loss

will be zero, and if 0 = 62, our loss will be one (see Table 3). Therefore,

our average or expected loss given x = 0 is

e.,(146
1
(0)

'

= 0) = 146
1 '
(0) 6

1
WO

1
Ix = 0)

+ (0), 0
2
4,(62 Ix = 0)

= (0 * .73) + * .27) = .27

as given in the first column of Table 9.
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Table 9

x= 0

(Lcyx), ei Ix)

x 1

61 6
2

6
3

61 6
2

63

8
1

0 * .73 0 * .73 2 * .73 0 * .14 2 * .14 2 * .14

2
1 * .27 1 * .27 0 * .27 1 * .86 0 * .86 0 * .86

.27 .27 1.46 .86 .28 .28

In this table, similar computations are made for each of the. three decision

rules for both x * 0 and x = 1. Observe that decision rule 62(x) produces

the smallest expected loss for each value of x'and may be judged as the

optimum decision rule. However, if x = 0, rule 61 is equally as good, and

if x = 1, rule 6
3
is equally as good. More importantly, however, this

observation indicates that the second and third steps can be simplified

still further. Note that if x = 0, 61(x) and 62(x) lead to the same decision

W
1
) and, consequently, must necessarily have the same expected loss. What

this emphasizes is that once we know x, we are really interested only in

the best deciejon (d1 or d2), rather than the decision rule (61, 62, 63) that

will lead to the best decision. Consequently, we need only compute the

expected or average valv! of the loss function for the available decisions.

That decision (not decision rule) with the smallest posterior loss will

then be selected. This is done in Table 10.
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Table 10

EL(d, Op(01x)

x = 0 x = 1

d
1

dd2 d d2

0
1

0 * .73 2 * .73 0 * .14 2 * .14

6
2

1 * .27 0 * .27 1 * .86 0 * .86

.27 1.46 .86 .28

Our action rule is the same as indicated previously; if we observe

x = 0, we will take action d
1

(retain), and if we observe x = 1, we will

take action d
2

(advance). This is in effecr, the same as adopting

decision rule 62 . As pointed out previously, in extensive form analysis,

only that half of Table 10 which corresponds to the actual result observed

(x 0 or x = 1) needs to be calculated.

So far, we have illustrated two forms of analysis which we claim will

lead to identical decisions. These forms combine prior information,

experimental results, and preferences using the machinery of probability

theory to trace the consequences of the inputs. The example that helped

to illustrate these ideas was kept at a trivial level so that the arithmetic

would not obscure the essence of the process.

2.2 The Formal Structure of Decision Theory

Although mathematical symbols may seem forbidding, they are an

indispensable tool in conveying ideas precisely. Therefore, both for

completeness and for precision we will retrace the key ideas of decision

analysis relying on symbols rather than numbers. Although integral signs,

f, will be used we remind our readers that this is merely a continuous

analogue of the summation operator, E .
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We let 1,[4(x), 01 be a nonnegative loss function defined on

the get of pairs of the parameter values, 6 and 0 . The symbol

a(x) is kied to emphasize the fact that the decision rules usually

depend on observed values of the random variable X; the observation

being obtained to elicit information about 0 . In some contexts it

may help to think of 0 as the mean of some probability distribution,

and %(x) as an estimate of 0 . Then 146(x), eJ is the nonnegative

numerical value of the loss associated with using 6(x) as an estimate

4i the mean, when, in fact, the mean is 0 .

In the first stage of normal form analysis, we need the expected

or average value of this loss function, where expectation is taken with

respect to the conditional distribution of X given 0 . This expected

value was referred to as the risk function and was denoted R(6, 0) .

That is

R(6, - ft[6(x), O]p(x10)dx .

For this integral, the symbol p(x10) denotes the probability density

of the random variable X, given the value of the state parameter 0

If X is a discrete random variable, p(x10) is to be interpreted as a

probability mass function, and integration is then replaced by summation.

As the symbols suggest, the risk function is similar to the loss function.

The major difference tests on the fact that the risk function no longer

depends upon the observed value of our experimental variable X; X has

been averaged out. This fact is emphasized by the absence of an x in

our notation for the risk function, R(6, 0) .

If one adopts a layesian view of statistics, and one is compelled

to embrace this view if he accepts any of several comprehensive axiom

systems for decision making, it becomes necessary to quantify previous

1.`,)0
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or collateral information about the state parameter 0, which we summarize

in p(8). In the second stage of normal form analysis, the expected or

average value of the risk function from stage one is then calculated with

respect to this prior distribution, p(0). We referred to this expected

risk as tha Bayes risk associated with 6, and denoted it, r(6, p) . And so

we have,

r(6, p) = fR(6, 0)P(6)d0

= f(11.(6(x), e]p(xle)dx)p(e)de .

Then, the third and final stage of the normal fora analysis consisted of

selecting the decision rule which minimizes the Bayes risk.

As was pointed out above, extensive form analysis follows a slightly

different route, but under rather general conditions, leads one to the

same decision. In extensive form analysis, we begin by evaluating the

posterior distribution of 6

p(Olx)
P(x)

o(0)p(x10)

and then determine the expected loss with respect to this posterior

distribution. In the continuous case, this expected or average loss can

be represented by the integral,

elx(
146(x), e]) = 1146(x), 01P(01x)d0 .

Naturally, in the discrete case, we merely replace the integration operation

with that of summation. The decision making criterion in extensive form

analysis is then to choose that decision rule 6(x), which minimizes this

expected loss. The reader should take special note at this point, that

1i
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although this expected loss depends upon the random variable X, it needs to

be evaluated only for that value x which is actually obtained.

In order to make clear the relationship between normal form and

extensive form analyses, let ua compare the decision criteria in the two

cases. Under normal form analysis we are to choose the decision which minimizes

the Bayes risk,

r(8, p) 10146(x), 8lp(x10)dx}0(8)de .

Now, if these integrals are suitably well behaved, we may interchange the

order of integration and so write the Bayes risk in the form,

r(6, p) f(fLid(x), 8lp(x10)p(8)dO)dx .

Since by Bayes theorem p(x18)P(0) p(01x)gx), we may rewrite this last

equation in the form

r(6, p) AlLIS(x), Olp(Blx)dO)p(x)dx . (2.1)

The observant reader will of course already have recognized the integral

in brackets as the expected loss which must be minimized under the extensive

form approach. This equation illustrates the crucial difference between

the two approaches. Extensive form analysis chooses the decision rule

which minimizes the expected loss for the particular value of x observed.

In contrast, normal form analysis chooses the decision rule which minimizes

the average of those expected losses for all possible values of x. Clearly,

if one particular decision rule minimizes the expected loss criterion of
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extensive form analysis for every x, then the average of those expected

losses under that decision rule must also be a minimum. In this case, it is

clear that the decision taken under extensive form analysis will coincide

precisely with that taken under normal form analysis. However, in those

instances where extensive form analysis apparently leads to different

decision rules depending upon the value of x observed, the equivalence of

the two approaches may not be obvious.

Although the possible non-equivalence of these two approaches may

seem to pose a dilemma for users of decision theory, in fact, it is a

non-problem which has been set merely for the pedagogical purpose of

underscoring some fundamental differences in the two approaches. Consider,

if you will, the following. Since we are admitting for consideration all

reasonable decision rules, we must allow that rule d (x) which, for each

x, minimizes the expected loss criterion of extensive form analysis.

Since 6
*
(x) will be selected by the extensive form approach irrespective

of the value of x obtained, it will also be chosen under the normal

form procedure. How do we construct 6
*
(x)? We do this in a straight-

forward operational manner: We use extensive form analysis for

the x obtained and choose that decision (not decision rule) which minimizes

the expected loss.

For a concrete example of the relationship between normal form and

extensive form analysis, consider Table 11 which summarizes the expected

losses under extensive form analysis for the three decision rules. This

table is merely a modified version of Table 9.
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x = 0

x -1

Table 11

0464(x), el)

6
2

d36
1

.27 1 .27 1.46 !

.86 I .28 I .28i

20

We found in Table 7 that the marginal distribution of X is given by

pr(X = 0) = .44 and pr(X = 1) = .56. Thus, as ine'cated in Equation (2.1),

the Bayes risk associated with decision 61 is given by the weighted average

of the entries in the first cotton') of Table 11, where the weights are

the marginal probabilities of X . And so we have,

r(61, p) (.27 * .44) + (.86 * .56) = .6

as we saw in Table 6.

2.3 Extensive Form Analysis with a Continuous Posterior

Let us now turn to an example of extensive form analysis which uses

a continuous model density. This example is only a slight modification

of that used previously; the primary difference being that we now assume

that both the state parameter 6 and the random variable X are continuous.

It should be noted that this example is merely a reformulation of one

considered by Hambleton and Novick (1972). As before, two decisions are

open to the decision maker who is guiding a student through an ordered

sequence of instructional units. At the end of each unit, the decision

maker, based on Ilia knowledge of the student's past performance, the

performance of similar students, and current test results, must decide
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to advance the student to the next unit in the sequence or to retain him

at the present level. If the decision maker knows the student's mastery

level (e), he would be willing to advance the student if 0 > 00 and to

retain him if e < 0 . Thus, the number e
o

is a cutoff (or selection)

point on the mastery scale with respect to the actions advance or retain.

In selecting 00, careful consideration of the objectives of the

training program, and previous experience with the training and evaluation

materials must prevail. If for example, so is intended merely to give

at least an even chance of completing the next lesson, 60 might be set

equal to that level of functioning which has historically had a 507, success

rate on the next unit. If, on the other hand, the decision maker is very

concerned about the ill-effects of the frustration of a poorly prepared

student reading advanced material, perhaps so ought to be somewhat

higher. In any case, once 00 is specified for the test, prior and collateral

information about the student will be combined with the test result (x)

for the purpose of estimating s .

Assume that for this two-action (advance or retain) problem, the decision

maker specifies a threshold (or step) loss function which can be described

by the following table: (Compare with Table 3)

d
1

(retain)

d
2

(advance)

e <e

Table 12

L(di, e)

e >e
o

0 b

c 0
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where b and c are both nonnegative. In the literature, losses associated

with falling into the lower left cell of this table are frequently referred

to as arising from "false-positives", since the decision maker has wrongly

presumed that the parameter e lies in the region which has positive ethical

value (i.e., has wrongly presumed that 0 > 00). Similarly, losses associated

with falling in the upper right cell are commonly referred to as arising

from "false-negatives". The nonnegative numbers, b and co reflect the cost

of making these two types of errors. Because the decision envisaged in this

example is rather local, affecting only one step in a program which is only

a small part of the student's total learning experience, a massive effort

to determine b and c exactly would seem inappropriate. In some cases, it

might seem reasonable to assume that c/b = 2, if for example, a false

positive results in repeating two steps in the Se4..liCe, as compared with

the repetition of only one for a false negative.

Following the general scheme for extensive form analysis outlined

earlier, our goal is to determine the action which will minimize the

expected or average posterior loss

Op(014de .

This integral Is equal to bfPr(0 > 001x1} if i = 1 and is equal to

cfPrie <
o
lx0 if i = 2. Therefore, we may minimize this expected loss

by making decision d1 for those values of x such that

bfPri0 > 0014} < c(Pr(0 < 001x))

and by making decision d2 for those values of x where

b(Pr(0 > 01x0 > c(Pri0 < 0014) .
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Although such a situation is unlikely in practice, when the two possible

values of the integral are equal, we will be indifferent about which decision

to take.

In many applications of this type, the range of test scores may be

cut into a decision d
1

region and a decision d
2
region by considering the

posterior distribution of 6(i.e., p(0Ix)) as a function of x . Doing this,

we see that the critical point Jividing the two regions can be represented

by that point xo in the set of possible test results such that

or

so that

c{Pr(0 < 001x0]} = b(Pr[0 > 001x0]}

c{prle < 001x01} b(1 Pr (6 < 0013%1}

c + b Pr(e < 00Ixo] ,2 (2.2)

What this equation says is that if we consider the class of possible posterior

distributions {p(01x)} to be indexed by x, and if we can find that member of this

class which is identified by x = xo, say, such that Pr(O < 001%1 ig b/(c + b),

then for all x < xo, we will choose decision d
1

and for all x > xo, we will

select decision d2 .

We will illustrate the computation of the cutting score xo on our

observation scale with an example. Suppose that the test score X has a

normal distribution with unknown mean 9 and known variance a
2

. Further,

suppose that all existing information about the parameter 0, which measures

the mastery level of a certain skill, may be summarized by a normal distribution

with mean T and variance . Then, a simple application of Bayes theorem

2
The uniqueness of the point x

o
satisfying this equation is presumed.
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yields a posterior distribution of 0 which is normal and has a mean of

(102 + x+)/(02 + 4') and a variance of a2./(4) + 02), Transforming this

posterior distribution on 0 into standard form, we see that

TO
2
+ x0+

e
o 2

Pr (9 < e Ix 3 . Pr z < ,
0 +

0 0
(4e/(0 + 4)1111

OM.

x0

where z has a normal distribution with mean zero and variance one.

Therefore, the cutting score x0 on the observation scale may be determined

by finding that point z0 in the standard normal distribution which has

percentile rank 1017[1,/(c + b)), and then solving the equation

TO
2
+ x0+

for x0 . Thus,

e
o 2

0 +
zo =

CO
2
/(0

2
+

2 2
x 12.1_2fe z r102/0 + 02)11/41
o o

(2.3)

In order to convey some feeling for how this loss structure and the

normal data and normal prior distributions interact to produce cutting

scores, Table 13 has been provided. In this table, the desired proficiency

level 0
0
= 75 and the prior mean r =

As we would expect with and a
2

held constant, the cutting score x
o

increases with c/b, the relative loss for a false positive as compared with

a false negative error. from an intuitive point of view, this relationship

makes sense. As c/b increases, false positive errors become relatively more

expensive than those of the false negative variety. Consequently, our
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Loss Constants

C
1

b

1 9

1 9

1 9

1 9

1 9

1 9

1 9

1 9

1 9

3 7

3 7

3 7

3 7

3 7

3 7

3 7

3 7

3 7

5 5

5 5

5 5
5 5

5 5

5 5

5 5

5 5

5 5

7 3

7 3

7 3

7 3

7 3

7 3

7 3

7 3

7 3

9 1

9 1

9 1

9 1

9 1

'9 1

9 1

9 1

9 1
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Table 13

Variances

Prior 4 1 Data a
2

Posterior

Variance

Posterior Cutting

Score x
o

Critical Posterior

Mean

80 a
2
+ xo.

a
2

+ 4)

9.0 9.0 4.5 64.57 72.28
9.0 16.0 5.8 57.58 71.93
9.0 25.0 6.6 48.67 71.71
16.0 9.0 5.8 67.39 71.93
16.0 16.0 8.0 62.76 71.38
16.0 25.0 9.8 56.94 71.00
25.0 9.0 6.6 68.72 71.71
25.0 16.0 9.8 65.24 71.00
25.0 25.0 12.5 60.95 70.47
9.0 9.0 4.5 67.77 73.89
9.0 16.0 5.8 62.61 73.74
9.0 25.0 6.6 56.01 73.65

16.0 9.0 5.8 70.22 73.74
16.0 16.0 8.0 67.03 73.52
16.0 25.0 9.8 62.99 73.36
25.0 9.0 6.6 71.36 73.65
25.0 16.0 9.8 69.11 73.36
25.0 25.0 12.5 66.29 73.14
9.0 9.0 4.5 70.00 75.00
9.0 16.0 5.8 66.11 75.00
9.0 25.0 6.6 61.11 75.00

16.0 9.0 5.8 72.19 75.00
16.0 16.0 8.0 70.00 75.00
16.0 25.0 9.R 67.19 75.00
25.0 9.0 6.b 73.20 75.00
25.0 16.0 9.8 71.80 75.00
25.0 25.0 12.5 70.00 75.00
9.0 9.0 4.5 72.23 76.11
9.0 16.0 5.8 69.61 76.26
9.0 25.0 6.6 66.21 76.35

16.0 9.0 5.8 74.16 76.26
16.0 16.0 8.0 72.97 76.48
16.0 25.0 9.8 71.39 76.64
25.0 9.0 6.6 75.04 76.35
25.0 16.0 9.8 74.49 76.64
25.0 25.0 12.5 73.71 76.86
9.0 9.0 4.5 75.43 77.72
9.0 16.0 5.8 74.64 78.07
9.0 25.0 6.6 73.55 78.29

16.0 9.0 5.8 76.99 78.07
16.0 - _16.0 8.0 77.24 78.62
16.0 25.0 9.8 77.43 79.00
25.0 9.0 6.6 77.68 78.29

25.0 16.0 9.8 78.36 79.00
25.0 25.0 12.5 79.05 79.53
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decisitr maker decreases his chances of making false positive errors by

increasing the cutting score, xo .

Since the mean of the posterior distributicn of e is a linear function

of x, we may reformulate the question of the critical cutting score xo into

a question concerning the critical posterior mean p
o

--, (To
2
+ x

o
0/1.02

/(o
2
+ 011

where x
o

is determined by Equation (2.3). In this case, we solve the

equation

0 - p
o o

o bat/ a
2
+ 4)))1/2

for p
o

. And analogous to Equation (2.3) above for x
o
, we have

Po o z0 tSa
2
/0

2
+

11

In preparing Table 13, we also calculated values of po which appear

in the last column. These results can be understood by referring to Figure 2.1.

Our procedure says that the critical posterior distribution of 6 must be such

that 1001b/(c + b)) percent of the probability lies below 00 . In order

to maintain this constant percentage, as the posterior variance increases,

the critical posterior mean of 0 must necessarily decrease for > .5
(c +

and increase for < .5. That is, as the posterior variance of 6

increases, the critical posterior mean moves away from 00 . From an intuitive

point of view, this makes sense. It implies that as a decision maker

becomes increasiagly uncertain about the posterior mean as an estimate of

0, he becomes more cautious, moving his critical mean in the direction of the

3;31; costly errors.

The effects of changes in parameter values on xo is a bit more

complicated since we must consider not only the posterior variance, but

also the ratio of the prior variance (0 to the variance of sampling

1 ki 0



Mean = 72.28
Variance = 4.5

U

Mean = 71.0
Variance = 9.8

27

okis 11 1P WO 1;11 OLIO St sLO

e

Mean = 77.72
Variance = 4.5

0
o

Mean = 79.00
Variance = 9.8

0

Mean = 70.47
Variance = 12.5

8

Mean = 79.53
Variance = 12.5

Figure 2.1. This figure illustrates the necessary change in the critical
posterior mean as the posterior variance increases. In the figure, we let
b/(b + c) = .9 in (i), (iii), and (v). We let b/(b + c) = .1 in (ii), (iv),
and (vi). The figure illustrates that for b/(b + c) > .5, the critical
posterior mean of 0 must decrease with increasing variance, while for
b/(b + c) < .5 it must increase.
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distribution of x (i.e., 0
2
). One can get some notion of what is going on by

examining the definition of 00 .

TO
2
+ x

o
u
o

=
0
2
+ f

Since 'Jo is the weighted average of T and xo, for given po, xo must inc.:ease

as the ratio 00
2

increases. This relationship is clearly indicated in

Table 13.

At this point let us look at a numerical example of some of the theory

we have developed in the last few pages. Assume that we have the following

situation:

(1) 0(0) N(80, 25) (Prior Distribution)

(2) p(x10) - NO, 16) (Distribution of Test Scores)

(3)

d
1

(retain)

d
2

(advance)

L(di, 0) Loss Function

0 < 0
o

0 >0-

0 1

2 0

(4) 00 = 75 (Pass Level)

Before collecting our observation on this subject, we can write the

posterior probability density function p(eIx) as a function of x . Thus,

80(16) + 25x 25(16)
P(elx) N 16 + 25 ' 25 + 16
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Since this is a completely general description of the posterior distribution

no matter what value x is observed, it should be possible to determine those

values of x which lead us to decision d1 and those which lead us to d2 .

This is what we did symbolically before when we determined the critical score

x
o

. We defined x
o
as that point such that if x happens to fall below xo,

then applying our criterion of minimum expected loss, we would be led to choose

d
1

. And of course, if x falls above xo, we would choose u2 . The previous

theory tells us that the next step is to calculate the expected loss under

each decision. Doing this we find:

and

(1,(d11 0)] = 1;5 1 p(81x)d0

elx

g (L02, 0)] = I-.
75

2 p(01x)d0 .
elx

By equating these two expected values symbolically and solving for that value

x for which equality obtains, we previously found that

2 2

x = a (0
o

z
o

( 02/4 02)14) T2-;

where z
o
is the (-c 19-9-b-)th percentile of the unit-normal distribution.

b

Substituting into the equation for xo, we find:

x
o

25

25

+ 16
(75 - (-.43) [25(16)/(25 + 16)111) - 80 IA

25

= 74.003 .

Therefore, we are certain that if we observe an x (test score) which

is greater than 74.003, extensive form analysis will lead us to advance the

student. Similarly, if the observed test score is less than 74.003, extensive

form analysis will cause us to retain the student for additional training.

Although, obt4inin5 a score of precisely 74.003 will be somewhat ambiguous
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since the two decisions will have the same expected loss, in practice this

will not be a problem. We will seldom find a test score which falls

precisely o' an indifference point. Suppose that we observe x = 73. Since

73 is less than x
o
= 74.003, we can be certain that extensive form analysis

will lead us to retain the student (decision d
1
). However, for the sake of

those who doubt mathematical arguments, we will calculate the expected losses

for comparison.

Since

we have

and so

and

6)Ix = 73] = 465 1 p(6Ix = 73)de = 1 - Pr(6 751x = 73)

c6(1.(d2'
6)Ix = 73] = f.

75
2 p(6Ix = 73)d6 = 2[Pr(6 < 751x = 73)] .

p(OIx = 73) - N(75.73, 9.756),

Pr(6 < 75)x = 73) = .409 ,

8)'x 0 731 = .591

8[1.(d2, e) Ix = 731 = .818 .

Clearly, we would choose d1 and retain the student as predicted.

A more realistic model than that just described would recognize the

fact that in educational settings the model variance as well as the mean

is usually unknown. In most situations, the decision maker will have

some inforzation concerning the variation and the region in which the

observations will fall; total ignorance would preclude even the proper
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choice of a measuring instrument. However, except in very special situations,

one's knowledge about the model variance
°2

is typically not sufficiently

precise to warrant the application of the known variance model.

The solution to the inference part of the unknown mean and unknown

variance problem has been provided by Novick and Jackson (1974). Beginning

with a normal model density with location parameter 0 and variance parameter

, and a gamma-normal prior density proportional-to

bo

+ 1
(0, .) «

1
exp

Im.1(0 w.)2 + R21/

-2$
2

they are able to show that

ist{n + 1 }]
1/2

- (mw. + x)/{m +
t(e)

[It
2

+ 10(x w.)
2
gm + 1)111

(2.4)

has a student's t distribution on m degrees of freedom. In this equation,

R + I) is the prior modal estimate of 4; w. is the prior modal estimate

of 0 given that # = R
2
/61 + 1); and, the parameter m is a weight factor

which describes the decision maker's degree of confidence in his estimates.

For the details of this development., the reader is referred to Novick

and Jackson (1974, Chapter 7).

From Equation (2.4), we see that t(0) is linear in 0 . Thus,

Pr(0 < 001x) = Pr[t(0) < t(00)1x3. And by using Equation (2.2), we

can partition the observation scale into two disjoint regions; one which

will lead to decision d1 and the other which will lead to decision d2 .

The process is practically the same as in the known variance case. The

only important change is titt we now use the t table with m degrees of
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freedom instead of a table of the unit normal distribution. Thus, we

determine the point to which has percentile rank 100b/(c + b) and then solve

the equation

t
o

a

(R
2

m(x0 - w.)
2
/(m + 1)]h

+ 1)]1/4[00 - (mw. + xo) / (at + 1)1

(2.5)

for x0 . Although the process of solving this equation will ordinarily

lead to two results, only one of the results will solve Equation (2.5) as

stated. The other will be associated with Equation (2.5) with -to on the

left-hang side.

2.4 An Example AO a Binomial Model

Let us examine this same basic problem using a different, and in some

ways, a more general model. For pedagogical purposes, this analysis will

initially be of the normal form variety, for we will actually exhibit the

Bayes risk function. Later we will redo the analysis using the much

simpler syriefoinexte. Rather than assuming that the mastery level 0 takes

on values in an interval, let us return to the original situation where only

two values ara possible. As before, we use the symbol 01 to denote the class

of nonmasters and 0
2

the class of masters at any point in time. On the

bails of prior in:ormation about the student and his training, the decision

maker formulates a prior probability distribution on the two -point state

space, p(01) 1 - p and 0(02) is p, where 0 < p < 1 . Thus, p represents

the "prior" probability that a given student is a master. Clearly, if p

were equal to zero or one, no uncertainty would exist and no decision problem

would remain. As before, two actions are open to the decision maker: d1,

declare the student s nonmaater and retain him at his present level or, d2,

declare the student a master and advance him to the next level. Analogous

to Table 3, our deeillen maker adopts the familiar threshold loss function:

A0.11, 1 )
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Table 14

L(di, 0
j
)

01 02

d
1

(retain) 0 b

d
2

(advance) c 0

where b and c are nonnegative.

It will be convenient in this and many applications to conceptualize

a hypothetical population of tasks for which the mastery judgments are

relevant. This done, we define a and 0 as the conditional probabilities

of acceptably completing a randomly selected task from this population,

given that the student is a master or nonmaster, respectively. In most

applications 41 will be large and 0 will be small. Our decision maker

plans to construct a mastery test by selecting t tasks from our hypothetical

population. For the purposes of this example, we will assume that the

tasks are experimuntally independent and that the probability of success

on each task depends only upon the mastery class to which the student

belongs. We denote by X the discrete random variable associated with the

number of tasks successfully completed. These assumptions imply that,

given 0, the random variable X has a binomial mass function given by

x

P(x10)

(c)ezix(1 - o)t

where x 0, 1, 2, t .
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If we are to follow the plan of normal form analysis previously

outlined, we should now write down all reasonable decision rules. With

t + 1 possible outcomes (i.e., x = 0, 1, 2, ..., t), an exhaustive list of

decision rules for even moderate t, would be cumbersome, indeed. however,

in the opinion of these writers the totality of reasonable decision rules

for this problem can be summarized by the relationship

{-

retain if x < s
(6

s
(x) (2.7)

advance if x > s

for s = 0, 1, 2, ..., t + 1. What this set of decision rules boils down to

is the following: Choosing a decision rule 6s(x) is equivalent to choosing

a cutting score s on the test score scale such that, if the observed number

correct (x) lies below s, the student is retained at the present level,

otherwise he is advanced. Selection of the decision rule 610(x), for example,

would lead one to retain the student if he completes 9 items or less

correctly, and advance him, if he obtains a total score of at least 10.

For this problem, the risk R(6
s

, 0 3) associated with each (6 , 0.)

pair can now be symbolically represented by

R(6s, ej) exieups(x), oil}

Inserting the loss function and model density into this relationship,

we find that

and

t t
R(6 el) E c(x)O (1 - 0)

t x

x.s

s-1
R(6

s'
e2) = E b(

t
)a
x
(1 - a)

t x

x=0

t
,

= b(1 - E (
t

x

)a
x
(1 - a)

t x
I

x=s

168
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Thus, the Bayes risk for each Ss may be represented by

r0s, = [110 ,

= (1 - p)c E (-WU x + bp(' E (
t
)a
x
(1 - a)t x]

x=s

t p}o(t)oxa ot
x 140(:)0(1 Ot xi= by + E [(1 -

x=s

(2.9)

Now it is clear that if the expression inside the summation sign has a

structure such that it is positive for all x less than some value xo and

negative for all x greater than xo, we could minimize the Bayes risk,

r(IS
s

p), by choosing Ss(x) where s is the smallest integer such that

s > x
o

. In fact, this expression has the necessary form. To see this, all

one needs to do is set the expression of interest equal to zero and solve

t o
x t x t x

c(1 p)(
x

)0 - ° - bp(
t
)a

o
(1 - a) ° =

0
xo

for the value(s) of x
o

. A few routine manipulations yield the root

x =
Ini(1 - 0)/{1 - + 941[4(0)i

9,n(c/b) + tnI(1 110)/P1 + t kri[(1 0)/(1 Oi (2.10)

Since there exists only one root x0, the expression, thought of as a continuous

function of x, can cross the x axis at only one point. Therefore, it must

be true that there is exactly one region of the x scale where the expression

is positive and exactly one region where it is negative. Although this

argument assures us that there is exactly one root, it does not reveal in

which region the expression is positive and in which it is negative. We,

therefore, re-examine the expression in brackets in Equation (2.9)
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For notational convenience, we define Q to be the expression of

interest. Thus,

Q (1 - p)c()Ox(1 6)t bp(:)ax(1 - a)t x

Also for convenience, we define a quantity R by the equation

R

oc(t)Bx(l 6)t - x

bp()ax(1 - o)t x

() - 13)

t

c Fa
P ) 1 - a La(1 - 6)

Our purpose in the following development is to determine that region in

which Q is negative. As a first step, we assume that Q < 0 and determine the

implications of that assumption. If Q < 0, then by merely manipulating

the inequality, Q < 0, we see that R < 1 and, therefore, in R < 0 Thus,

in R x.n + tn (-1 + t in - x In 17: 1-:1< 0
1 - a 6(1 - a)

and so,

x in C1j> la + + t /n 1 B (2.11)
1 - a

Comparing Equation (2.10) and Equation (2.11), we see that if

9,11{[a(1 - oinau - > 0, the condition that Q < 0 is satisfied whenever

x > x
o

. And if tn{[a(1 - a)] mo. - < 0, the condition that Q < 0 is

satisfied whenever x < x
o

. But the condition that /aqu(1 - B)]/[6(1 a)]) < 0

is satisfied if and only if [a(1 a)]/p(' - a)] < 1, which is equivalent

to a < a . Admitting that the foregoing is a bit confusing, we summarize

the results in the following table.
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a < (3

>

X < X
0

X > X
0

Q < 0 Q > 0

_Q > 0 g < 0

37

The implications of the statements in this table for the decision-making

process are two.

(1) If a > $0 then the decision maker will minimize the Bayes risk

r(6
s
0 0) by choosing 6(x) where s is the smallest integer such

that s > x .
o

(2) If a < 0, the decision function (2.7) is inappropriate. The

condition a < $ implies that the decision maker's model asserts

that a nonmaster is more likely to get a particular item correct

than a master. Such a model would certainly lead the decision

maker to consider a decision function of the form

advance if x < s

65(x) =

retain if x > s

as more appropriate than Equation (2.7).

Since under normal conditions a will be considerably greater than O.,

implication number one above will usually apply.

Perhaps the most important characteristic of the expression for the

critical or cutting test score, Equation (2.10), is its dependence on the

probabilities a and $ . When a and 1 - 0 are both near one, the cutting

score will tend to .e small. Crudely speaking, in this case it does not

take many satisfactory performances to decide whether a student is a

master or not. On the other hand as a and $ approach one another, it

becomes ever more costly to separate the masters and nonmasters. If s
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is greater than t, the number of tasks in the test is too small to permit

any judgment other than d1 (retain). If s < 0, the only feasible decision

is to advance the student. This might occur if p, the prior probability of

state 02, is very close to one. Table 15 gives some examples of critical or

cutting scores for some selected parameter values, with the loss function

constants c = 2 and b = 1 in Table 14.

Returning now to familiar ground, we review the implications of the

latest wrinkle in our decision making scheme in the context of our initial

numerical example. The only structural difference between the present

situation and that of Section 2.1 is that we now have t tasks instead

of one. For the purposes of this example, let us assume that we have a test

of length eight (i.e., t = 8). Then, following the procedure outlined for

normal form analysis problems, we identify the values of the inputs to the

black box.

(a) Specification of Prior Information. Prom Table 1, we see that

our prior beliefs about a may be summarized by o(01) = .4 and

p(02
) - .6. Thus, in the notation of this example, we have

p = .6, or the odds we would be just willing to give that this

student is a master without resort to current test score

information are 3/2.

(b) Indicating the Experimental Plan. As we pointed out in the

previous development of this example, the plan is for the decision

maker to give the student a test composed of 8 tasks. On the

basis of this test, the decision maker is to give the student a

score which is equal to the number of tasks correctly answered.

The assumptions are, of course, that the tasks are equally difficult

and experimentally independent, given 0 . The distribution of X

given 0 can therefore be described by the binomial mass function
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Table 15

Cutting Scores

(Classify as a master (62 ) if the number

correct equals or exceeds the cutting score)

Prior Prob
of master

P

Number of
test tasks

t

Prob. of success for master (a), Prob of success for nonmaster (0)
a 0 a 0 a 0 a 0

.8 .2 .8 .1 .9 .2 .9 .1

.9 10 5 4 6 5

20 10 8 12 10

30 15 13 17 15

.7 10 5 5 6 5

20 10 9 12 10

30 15 13 18 15

.5 10 6 5 6 6

20 11 9 12 11

30 16 13 18 16
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lot - x

p(xle) - x

(Itc)ax(1 a)t x

40

for 8 = e
1

for e e2 .

From Table 2, we see that for this example a = .8 and B = .2.

This states that if our student is a master, the probability that

he will give an acceptable response to any task is a = .8. If

he is a nonmaster, this probability is B = .2.

(c) Specifying Preferences and Decision Rules. From Table 3, we see

that in the notation of the previous theoretical development, our

threshold loss may be described by c = 2 and b = 1. In words,

this implies that we would be twice as unhappy (in terms of some measure

of loss) if we were to advance a nonmaster than we would be if we

retained a masterL(4i
2'

e
1
}jgd e

2
) = 2.

Following the procedure indicated in our general development, we identify

10 reasonable decision functions.

s
(x)=

d
2

(advance) x > s

for s = 0, 1, 2, 9.

The ramifications of these decisions are summarized in the following table.

fld

1
(rfitain) x < s
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Decision Retain

6o(x)

0
1
(x)

0
2
(x)

6
3
(x)

6
4
(x)

6
5
(X)

6
6
(X)

6
7
(x)

6
8
(x)

0
9
(x)

Never

if x = 0

if x < 1

if x < 2

if x < 3

if x < 4

if x < 5

if x < 6

if x < 7

Always

41

Advance

Always

if x > 1

if x > 2

if x > 3

if x > 4

if x > 5

if x > 6

if x > 7_

if x > 8

Never

1

Our problem, then, will be to select from these 10 reasonable decisions, that

one which will minimize the expected or Bayes risk. Substituting into

Equation (2.8a) and (2.8b), we indicate the risk of each (0
s

, 0 ) combination by:

and

8

R(0
s

, 0
1
) = 2 E (8 ).2 x .8

8 - x

xis

8

R(0s, 02) = 1 - E (8).8x.28 x .

x=s

Thus, from Equation (2.9), we have the Bayes risk given by

8 8 x 8 - x 8 x 8 - x
r(0s, p) .6 + E (.8(x).2 .8 - .6(x).8 .2 1 4 (2.12)

X245

Our theory tells us that this function is a minimum if we take s to be the

next integer greater than xo, where xo is given by:
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111(2) + £n(2 /3) + 8 £n(4)
x
0
-

in(4) + tn(4)

= 4.104 .

And, therefore, the Bayes risk r(6s, 0 will be a minimum if we choose 65(x).

Substituting s = 5 into Equation (2.12), we see that the minimum Bayes risk

is r(65, p) ..042. To convince the still skeptical reader that 65 does,

in fact, lead one to the minimum Bayes risk, in Table 16 we have exhibited

r(6s ,
p) for each of our decision rules.

Table 16

r(48, p)

for c/b = 2, p =

s

.6, and t = 8

r(6s, p)

0 .800

1 .666

2 .397

3 .163

4 .051

5 .042

6 .123

7 .298

8 .499

9 .600
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As promised, we shall now reconsider the preceding problem using

extensive form analysis. It will be recalled that analyses of the extensive

form have two major advantages. First, it is unnecessary to exhibit all

reasonable decision rules. And secondly, in minimizing the expected loss,

it is necessary to consider only that value of x actually obtained.

As we shall see, these simplifications will make this analysis almost

trivial.

Recall that the likelihood of X given 0 is given by

P(xO) -

for 0 = 0 (nonmaster)

for 0 = 0
2

(master)

where x = 0, 1, 2, ..., t (see Equation (2.6)], and that Pr(0 = 02) = p .

Combining these two probabilities we see that the joint probability density

of 0 and X is given by

p(x, 03) t
p)BX(1 Ot X

)1143
X
(1 - a)

t x

3 = 1

2

where 0, 1, 2, ..., t . Therefore, by Bayes theorem, the posterior

distribution of 0 is given by

(:-

(1 - p)Ox(1 - B)t x + Pax(1 a)t x

(1 - p)Bx(1 - B)t x

po
x
(1 - a)

t x

p)Bx(1 x pana
-
tot x

177

for j = 1

(2.13)

for j = 2 .
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Combining Table 14 with Equation (2.13), we see that the expected posterior

loss under d
1

is given by

[1,(d
1

, 8)] =
oix

and that under d
2
by

goix [1,02, 8)] =

bpax(1 -a}t %

{1 - 00%(1 0)t
x +pax(1 -a}t %

c(1 p)8x(1 0)t

p)ox{1 ot x pax(1 ot x

Therefore, extensive form analysis leads one to the decision rule given by

or equivalently,

8*(x) =

if bpax(1
x

< c(1 P)8x(1 B}t %

if bpax(1 - a }t % > c(1 p)0(1 8 }t x

[101 <

t

kn + tn
1

if x tn

d
2

if x in > &n (t) + /n

A t;)
t xn

i

1 - 4

"4' t xn
1 -

By the argument following Equation (2.11), we see that when a > B this

decision rule is equivalent to that reached under analysis of the normal

form. Thus, when d > 0,

where

,(d if x < xo
.1.

\..d
2

if x > xo

17?



X
0

tn(c/b) + In[(1 p)/p] + t tn[(1 $) /(l - a))
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Consider again this last experimental situation. A moment's reflection

will confirm that increases in the number of tasks in the test will increase

the overall loss in the decision problem. Each task included in tiff test,

for example, increases the time the student must devote to testing and

involves some commitment of facilities and, perhaps, time on the part of a

teacher. If we can assume that a certain fixed cost k is incurred for each

task in the test, we can reformulate our decision problem into two parts to

take account of this additional loss: The first being the selection of the

critical number of items I to be answered correctly, and the second being

the selection of the optimal number of tasks T to minimize the total Bayes

risk r[S(t) , + tk [where 6(t) denotes the optimum decision rule when

the test contains t items]. The final term, tk, may be thought of as the

cost of testing.

Within the framework of normal form analysis, we would seek a cutting

score (s) and a number of test tasks (t) that would minimize the total Bayes

risk

s-1
t x

bp E (t)a (1 - a)
t x

+ c(1 p) E (x
(1 0)t x + tk .

x=0 x=s

The constant unit cost or unit 1086 k must be on the same scale as the

original loss function, if we are to have a valid total Baye, risk.

For each fixed value of t, we already know how to select the critical

number of items I to be answered correctly. Consequently, with the aid

of a computer, it is easy to determine values of :Mt) , + tk for a

range of test lengths t . We can then search the display of values of the
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total Bayes risk, searching for T, the optimum level of t . An analogous

approach applies within the framework of extensive form analysis.

In our example, with c = 2, b = 1, a = .8, 8 = .2, and p = .6, suppose

the loos associated with administering one item is k = .01. This could

happen, for example, if we think of each test task as taking up .01 as much

time as au instructional unit. If the loss constant c = 2 was selected

because it is associated with the time loss that will result in repeating

two instructional units and b = 1 because it is associated with the time

loss that will result in repeating one unit, then k will be on the same

scale. From Table 17, we can see something of the shape of the total Bayes

risk function for this example. As the table clearly indicates, in this

case the decision maker would choose a test length of t = 7 and a exitical

test score I = 4.
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Table 17

Display of Total Bayes Risk

for Various Values or t

No. of Items (t) Critical r[6(t) , p] + .01

Score

(1)

t

0 1 .6000

1 1 .2900

2 2 .2680

3 2 .1756

4 3 .1702

5 3 .1311

6 4 .1329

7 4 .1167

8 5 .1221

9 5 .1174

10 6 .1248

11 6 .1263

12 7 01348

13 7 .1398

14 8 .1489

15 8 .1559

16 9 .1654

1.7 9 .1736

18 10 .1833

19 10 .1922

20 11 .2020....im.a... Illmm.=mm =11
b 1; c in 2; a = .8; = ,2; p = .6; k = .01

411111=1.1 181
HIVM1110111.M=LMIIII/nd '11?
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3. Utility Theory

In this section, we turn our attention to a theory which is much

stronger than that illustrated in the previous examples. We will now abandon

the notion of loss which we relied upon so heavily in Section 2, in favor of

the more generally applicable notion of utility. The major difficulty with

using loss functions as previously described, lies in the fact that we have

simply assumed their existence. Because of the aprarent reliance of the

loss function on some scale, be it economic, social, political, or other,

it is by no means obvious that such a function should exist.

In marked contrast, utility notions do not require that we invent

a different and in some sense arbf.trary scaling procedure for each problem

we meet. Instead, utility theory uses the notions of ordered personal

preferences or desirability of outcomes to scale the consequences of each

(d, 8) pair. Although several axiom systems have been proposed to insure

the existence of utility functions, these axioms generally require only

the very basic relationships between preferences which rationality demands.

Although these axioms contain many structural details concerning the

nature of outcomes, preferences, and rewards, the most important

characteristics of these axioms for applications seem to be the require-

ments for the comparability of any two outcomes and the coherence of the

set of possible comparisons.
3

The first requirement merely assures that

for any two outcomes A and B, precisely one of the following situations

must obtain;

1) A is preferred to B, or

2) B is preferred to A, or

3
The interested and mathematically able reader is referred to De Groot

(1970$ Chapter 7) for a detailed consideration of these axioms.

1 8 2
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3) A sad B are equally desirable outcomes and, we are, therefore,

indifferent as to which occurs.

The second requirement is one of transitivity. It merely asserts that for

any three outcomes A, B, and C, if A is preferred to B and B is preferred to

C, then it must be that A is preferred to C. The point is that these

requirements of comparability and coherence are both simple and reasonable.

They are incorporated into our system of preferences without question,

for it is generally agreed that any violation of these axioms in practice,

if exposed, would be deemed ridiculous and one's system of preferences

reconsiders'.

As an aside, we note that those readers who like the notion of loss

described in the previous section need not despair. As Lindley (1972) points

out, in applications it typically seems true that one can define a suitable

loss function by

L(d, Maxi7(d, 0)1- u(d, (3.1)

if the number of outcomes is finite.

Although we will not devote a great deal of space to the problem of

assessing one's utility, we will consider one method which will work in

problems where there are a finite number af outcomes.

We can represent the set of outcomes by the following table:

d

d
2

d
m

1
0
2

e
3

en

C
11

C
12

C
13

C
ln

C
21

C
22

C
23

C
2n

C
ml

C
m2

C
m3

C
mn
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Where C22, say, is the outcome or consequence associated with making decision

d
2

when 0
2

is the true state of nature. Let C be the most preferred outcome

and C* be the least preferred in the table, and assume that you are given

a lottery ticket with a v percent chance of "winning" C
*
and a 100 - v

percent chance of "winning" C*. Further, assume that someone has offered

to take the ticket off your hands in exchange for Cij. Your task is to

discover that value of v such that you would be willing to flip a fair

coin to decide between the alternative &:

*
1) A ticket with a v percent chance on C and a 100 - v percent

chance on oror

2) Selling your ticket for outcome Cij.

The utility of outcome C4j can then be defined by u(Cij) a. v/100.

This procedure can then be followed for each Cij in turn until utilities

have been coherently assigned to each of the outcomes.

We now return to our initial example to illustrate this procedure.

Recalling that we have two states, nonmaster and master, and two reasonable

decisions, retain aad advance, we stamparize the outcomes in Table 18.

Table 18

possible outcomes C
ij

0
1

(nonmaster) 0
2

(master)

d
1

(retain)

d
2

(advance)

C
11

C
12

C
21

C
22

Surely the most desirable outcomes are C11 and C22. In either of

these cases, we correctly classify the student, so it is probably unreasonable

to believe that one should be preferred to the other. Furthermore, on the

presumption that if a nonmaster is advanced, he will not only lose%the

18
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time required to complete the next unit, but may also become frustrated

and discouraged, let us assume that misclassifying a master is much more

desirable than misclassifying a nonmaster. So in terms of our notation,

we have C
11

= C
22

= C and C
21

= C, . In this simplified example, the only

remaining problem is to determine u(C12). What we need to determine is that

value v such that our decision maker would be willing to flip a fair coin to

decide which gamble he will take:

1) A lottery which pays off C (a correctly classified student)

v percent of the time and C* (a misclassified nonmaster)

(100 v) percent of the time; or

2) A sure C
12

(misclassified mater).

Admittedly, specifying v is not an easy task, but it can be done. In

order to accomplish this, our decision maker might be aided by considering

"how much better" or more desirable correctly classifying a student is than

misclassifying a nonmaster and compare this with how much better correctly

classifying a student is than misclassifying a master. If, for example,

correctly classifying a student gives you 10 "utiles" more than misclassifying

a. nonmaster and only 5 "utiles" more than misclassifying a master, then v

for C
12

would be 50 percent. This says .hat misclassifying a master is

half-way between misclassifying a nonmaster and correctly classifying a

student on a "utiles" or desirability scale. Assuming that, in fact, v = 50

then u(C
12

) = v/100 = .5. Carrying out the above procedure for C11, C21, and

C22, we see that it must be true that u(C
11
) = u(C

22
) = 1 and u(C

21
) = 0.

Summarizing this in Table 19, we have
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Table 19

Utilities of (di, e
j
)

Al (nonmaster) 0
2

(master)

dl (retain) 1 .5

d
2

(advance) 0 1

In the next section, we will examine some classes or families of utility

functions which may be used to describe a decision maker's preferences

in the dichotomous or two-action decision problem. 'Analogous to the

minimization of expected loss in extensive form analysis, decision theory

with a utility function requires us to select that decision which will

maximize the posterior expected or average utility. That is, we seek that

d (i = 1, 2) such that

0)p(01x)de

is a maximum. As usual, 0 is the parameter which summarizes the state of

nature and p(01x) is its posterior density.

In what follows, it will be important to recognize that if

then for b > 0

e (u(d 01 > e ba(d p 0] p

Olx
Elk 2

oteixtbu(di, 0) + c) > (11. (bu(d2, 0) +
olx

2'
c)

That is, if di is preferred to d2 using the utility function u(di, 0),

then d
1
will still be preferred using any positive %near transformation

of u(di, 0). A similar demonstration is valid when the direction of
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the inequalities is reversed. So positive linear transformatioas of

utility functions will not alter the ultimate decision. This means that

for decision purposes, a utility function needs to be determined only

up to a positive multiplicative constant and an additive constant.
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4. Utility and the Two Action'. Problem

As we saw in the last section, utility functions are imprecise

things. In practical situations, we are often unable to specify our

utility associated with various (di, 0) pairs with anything approaching

mathematical precision. Generally, the best we can do is find some

approximation which agrees fairly well with our subjective evaluation

of the payoffs.

Our purpose in this section will be to illustrate a variety of

families or sets of utility functions which have proven useful in

applications. In selecting families of utility functions for inclu$ion

in this section, we have used two principal criteria. First of all, we

have sought to include families which are mathematically tractable in the

sense that their expected values are easily calculated for standard

distributions. Secondly, we have sought families which permit an acceptable

compromise between having too many parameters for the decision maker to

conveniently specify, and being so restricted that significant aspects of

the decision maker's preferences cannot be expressed.

4.1 Threshold Utility

With threshold utility, like threshold loss discussed in Section 2,

we separate (or partition) the possible values of our state parameter

0 into a number of mutually exclusive subRets. For continuous 6 we might

consider the partition {Ai, A2} where Al = 016 < 001 and A2 = led

for some e
o

. Thus, for decision purposes, those values of 0 which are

less thar 'one point, 00, will be considered as a set and denoted Al .

Those values of 0 which are greater than or equal to 00 will be grouped

together as A2 . This partition would be analogous to our previous
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examples where 0 was a measure of student ability and 00 was that point

which separated the masters from the nonmasters on an educational test.

Another possibility with threshold utility would be to use a slightly

finer partition of e . This might be accomplished, for example, by preselecting

three points instead of one; 01, 02, and 03, say. We could then use the

partition {B
1,

D
2'

B
3'

B
4 } where B1 ' {Ole < el

}; B2 {ele 1 le < 02 ) ;

B
3

i= {010
2

< e < 0
3 '
1. and B

4
= {010 > 0

3
). Such a scheme might be useful

if we needed to differentiate those masters who "just barely made the

grade" from those who had truly assimilated the material, with analogous

distinctions for the nonmasters. Naturally, even finer partitions could

be used if the situation warranted it.

Returning to our dichotomous partition {A1, A2), let us considii it

in more detail. If we denote the utility associated with each (di, AI)

pair by u(di, Ai), then in the two action problem, we may represent the

threshold utility function as in Table 20.

d
1

d2

Table 20

u(d , A
j
)

Al" < eo) A2(e ed
a b

c d

Decision or action d
1
is then to be preferred whenever

elx(o(dl, Ai)] > eelx[u(d2, As))

or whenever

a{Pr(0 < 00]) b(Pr(0 > 001) > c{Pr(0 < 00]) d{Pr(6 > 001) . (4.1)
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In decision problems similar to those discussed earlier in the co,text of

educational testing, the d's involve decisions about the true state of

nature 0: "Is he a master or a nonmaster?" When this is the case, it

will usually happen that either a and d or b and c will be associated with

"correct" decisions, and therefore, ought to be larger than the other

utilities in their respective columns in the table. Since the labeling

of d
1

and d
2

is arbitrary, we will assume that a and d are the correct

decisions in this analysis. Furthermore, since we demonstrated at the

end of the last section that resealing utility by a positive linear

transformation does not affect our decisions, we will assume that all

utilities in the table lie in the interval between zero and one. Applying

these stipulations to Equation (4.1), we see that decision d1 will be

preferred whenever

(a - 0{Pr[6 < 60)} > (d b)(Prf6 > 0011

or alternatively,

Since

we ha a

< 6 I

d b

a W c
Pr [6 > e

0

Tort° > 00] = 1 - Pr(6 < 00)

d b
< Pr(6 < 0) .

(a c) + (d -b)

By a similar argument, d2 will be preferred whenever

d b

;(a + (d > Pr [6 < 001

190
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The reader should note the similarity between Equation (4.3) and Equation

(2.2). In fact, if a = d = 1 and one considers the loss as specified in

Equation (3.1), then it is clear that the equations are identical. And so

by simply rephrasing the example of Section 2.3 in terms of utility instead

of loss, we see that the posterior cutting score is given by

2 -1bb -
b
c
= PO) < 001x03 .

Consider the following numerical example previously discussed in

Section 2.3. Suppose that the test score X has a normal distribution with

unknown mean 0 and unknown variance 0 . Further suppose that after careful

consideration of all collateral information available, our decision maker is

able to adequately summarize his prior beliefs about 0 and 0 for the student

under study in terms of a gamma-normal distribution with parameters m = 9,

w. = 80, and R
2

= 144. By Equation (2.4), we see that

[9(10)]1/2(0 (9*80 + x)/10]
t(elx)

[144 + 9(x - 80)2/10)1/2

(4.4)

has a student t distribution on 9 degrees of freedom.

In order to apply Equation (4.3), we need two additional pieces of

information: A critical true score
o

and d utility function u(di, 0).

As before we let 0
o

= 75. For purposes of.this example, we describe

our utility function by the followin3 table.

d
1

(retain)

d
2

(advance)

u(di, 0)

0 < Oo 0 0

.9

MP'

0

.5

1
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Applying Equation (4.3), we see that we will retain the student if

Pr(0 < 00] > .5/(.9 + .5) A .36. And by Equation (4.4), this is

equivalent to Pr[t(01x) < t(751x)3 > .36, where t(01x) is distributed

as a student's t with 9 degrees of freedom. If we have already collected

our data so that x is known, this decision criterion can be applied

directly. However, if x is not yet known, we can apply the same argument

used in Section 2.3 to determine the now familiar cutting score, xo, which

divides the observation scale into two disjoint decision regions. There

are two steps in the determination of xo . First, we must locate the

point t
o

in a table of the central t distribution with 9 degrees of

freedom, which has percentile rank equal to 36. Secondly, we must solve

the equation

t = -.37 =
o

(14A + 9(x
o

- 80)
2
/10]

h

(90)11(75 - (720 + x0) /10]

(4.5)

for x . Working out the algebra, we find x
o

= 43.5 and x
o

= .635.

Substituting these two possible solutions into Equation (4.5), we see

that only xo = 43.5 satisfies the equation as stated. Thus, whenever

the observed x is greater than 43.5, extensive form analysis will lead

the decision maker to advance the student. Of course, whenever x is

less than 43.5, the student will be retained.

We turn now to another class of utility functions. This time, we will

treat utility as a continuous function of 0 rather than a disctate one.

Continuous utility might be considered as the limiting case of thteshold

utility as the partition grows increasingly fine.
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4.2 Linear Utility

We direct our attention first to the simplest of continuous utility

functions, that is, those which are linear in 6 . In the linear two-

action case, we define utility ty functions of the following form.

u (di, 0)

e + f0 i =1

g + h0 i =2

(4.6)

The reader should note that what we have done here is define utility

as a separate linear function for each possible decision, di . Thus, if

decision one is chosen, the payoff or utility is to be a linear function

of the state parameter e with slope f and intercept e For decision

d2, the slope is h and the intercept is g .

The existence of a breakeven or indifference value e
o

of the state

parameter 0 imposes the condition that

e + f Oo = g + h e
o

or e
o

(e g)/(h f) .

In our attempt to maximize expected utility, we will select action d1 if

e [(e + f0)120 > tt(g + h0)14

If pe =
pelt

denotes the posterior mean of et this implies that action di

is taken if

e + f Me > g + h pe .

In other words, with linear utility, the action taken depends only upon the

mean of the posterior distribution of the state parameter et other attributes

of the distribution are irrelevant for decision purposes.

If we index our decisions so that h f > 0, we take action dl

whenever p
0

< 0
o
and action d

2
whenever p

0
> 0

0
Figure 4.1 illustrates this
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e

(b)

Figure 4.1

Linear Utility

Figure (a) above illustrates linear utility of the form of Equation (4.6) with constants e = 30.2, f = .4,

g = 59, and h = .8. Reparameterizing (a) according to u*(di, e), Equation (4.7), the utility of eo is equated

to
o
and the axes are rotated so that the d

2
branch has a slope equal to one. This reparameterized form of (a)

is illustrated in (b). In this illustration, since u (d
2'

ate) > u (d1 0 '
) extensive form analysis will :ead

the decision maker to select action d
2'
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situation graphically. When linear utility is used, one needs to calculate only

the utilities of each decision at the posterior mean ue . The decision with the

highest utility at ue should then be selected.

As the general linear utility function now stands, Equation (4.6), we

need to determine the four constants e, f, g, and h before it is completely

specified. However, if we employ the flexibility afforded by the requirement

that a utility function needs to be determined only up to a positive linear

transformation, we can reduce the number of unknown constants to two.

Thus, if h > 0 in Equation (4.6), we may redefine u(di, e) by making the

following positive linear transformation

And so

u
*
(di, 0) - 0) - 0/h .

let + fie = 1

u*(d , e)

i = 2

where et = (e g)/h and f' = f/h .

The nature of our assumption that h > 0 for this transformation to be

valid cannot be overemphasized. The condition that h > 0 is equivalent

to the statement that for decision d2, utility is a strictly increasing

function of the state parameter 0 . In terms of our previous examples where

we considered 6 to be an ability index, h > 0 would make sense only if d2

were the decision to advance the student. For if d
2
were the decision to

retain him at the present level, we would be in the untenable position of

asserting that as ability increases, the utility or desirability of

retaining the student at the present level also increases.

(4.7)
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If one ls careful about making such transformations, this limitation

will not catise serious problems. In applications, it is usually the case

that the utility or desirability of one of the decisions will increase

with the state parameter 0 . Thus, all one needs to do is label that

decision d
2
and result (4.7) is completely general.

We turn now to an illustration of one of the most direct methods available

for determining the constants e' and f' of Equation (4.7). In order to make

this method work, the decision maker must be able to specify two ordered

pairs (E1, 02) and 031, ep such that

and

u(d
1
) = u(d

2' 2
)

u(dl, 01) = u(d2, 02)

Substituting the equivalents of these expressions from Equation (4.7), we

have

and

e' + f'81 = 0
2

e' +f'91 =62.

Solving this system of equations, we find that

and

0 - 0'
2

f' = f/h =
2

0
1

- 0
1

91-11 I. 02 "1
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To illustrate the simplicity of using linear utility, consider the following

example. After completing a unit of Individually Prescribed Instruction,

a student is given a 16 item test to determine whether or not he has mastered

the material. From considerable past experience, our decision maker knows

that 50% of those students obtaining scores of 12 on the test are able to

satisfactorily complete the next sequence. On the basis of this information,

he feels that a "true score" of twelve is the minimum necessary for advancing

the student to the next unit. Reparameterizing this true score in terms of

proportion correct, we find that 00 = .75.

The next stage in our decision making process consists of determining

the posterior distribution on the state parameter 0, where in this problem

0 denotes the true proportion correct. Using the techniques described in

Novick, Lewis, and Jackson (1973), in Lewis, Wang, and Novick (1973), and in

Wang (1973), our decision maker is able to determine a posterior distribution

/-
on y = sin

-1v0
. Although this distribution is rather complicated and

apparently does not exist in closed form, its precise specification is actually

irrelevant for the decision-making process when linear utility is used.

Under linear utility, if we can determine or at least approximate the expected

value of e, we will have gleaned all the information from the posterior

distribution necessary to make our decision.

Lewis, Wang, and Novick (1973) estimate pe by transforminge,(Y1x)

according to the equation

. 1

est of p
e
- sin

2
[.17.t,(yjx)] .

Since this estimate of pe is, in fact, equal to the median of the posterior

distribution of 0, it is likely to be a poor estimate only in those cases

where the posterior distribution of e is highly skewed. Furthermore, this

is likely to be the case only when the true proportion correct is near either
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zero or one. Thus, as long as the critical criterion score 0
o

is not

too close to either zero or one, errors in estimating toe are unlikely

to lead to incorrect advance or retain decisions of major consequence.

It is true that if the true proportion correct, 0, is very close to eo,

an incorrect decision is likely. However, linear utility implies that

differEnces in the utility of the two decisions are not great, for points

near the point 60 . What this means for the decision making process is

that with a linear utility function, the output of a readily available

and easy to use computer program [see Lewis, Wang, and Novick (1973)1 will enable

our decision maker to determine a useful estimate of the posterior mean p0

at which to evaluate his utility function.

At the next stage in the process, our decision maker must specify his

utility function. Actually in this example, very little needs to be done.

For most reasonable linear utility functions, the utility associated with

the decision to retain the student will have a smaller slope than that

associated with the decision to advance the student. Since the two

branches of u(di, 0) must intersect at e , he will retain the student if

pe < eo and advance him if pe > 00 . Thus, as long as our decision maker

is certain that he will be satisfied with a linear utility function, in the

dichotomous decision problem, all he really needs to determine is the

ordinal relationship between f and h . If f > h [i.e., the slope of

u(d1, 0) is greater than the slope of u(d2, 0)), he will select decision

d1 whenever p
0
> 0 and select d

2
whenever p

0
< 0

o
. Of course if

f < h, the situation is reversed.

The "catch" to the foregoing simplicity is that the decision maker is

usually not certain that he will be satisfied with a linear utility function

until he tries to specify one. In practice the utility function should be

overspecified by indicating at least three pairs (0i, 0j) such that
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u(d ) u(dj' es). By overspecification, the decision maker is forced

to carefully weigh the implications of a linear utility function.

In applications, linear utility functions seem to behave more reasonably

in the neighborhood of the breakeven point, thanthan do thre.shold functions.

In this region, the rewards and penalties for correct and incorrect decisions

frequently change smoothly rather than abruptly.

The fact that linear utility functions are not bounded when a is unbounded

creates some problems. Severe of the axiom systems that have been used to

construct decision analysis require that utility functions be bounded. To

this theoretical objection must be added the practical fact that unbounded

utility functions simply cannot be interpreted far from the breakeven point.

These objections are partially removed if the posterior probability distribution

of the state parameter a is fairly closely packed around the breakeven point.

If there is almost no probability attached to extreme values, unbounded

utility is of little practical importance.

4.3 Quadratic Utility

As we saw above, decisions involving linear utility functions depend only

on the mean of the posterior distribution. Quadratic utility functions on

the other hand, result in making decisions that depend on both the mean and the

variance of the posterior distribution. We begin by defining quadratic

utility by a function of the form:

-a(0 b)(0 c)

u(d , 0)

-e(e f)(8 g)

= 1

i= 2
(4.8)

Observe that in order to use this utility function, we must specify

the six constants: a, b, c, e, f, and g . The constants b, c, f, and g have
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special meaning in the present parameterization of the utility function.

These constants correspond to those values of 8 where the utility of the

respective decisions is zero. In the example which we considered extensively

in Section 2, it might be argued that one reasonable and convenient paint

which might be used to fix the location of our utility function would be the

indifference point 00 . If we can use the permissible linear transformation

of u(di, 0 to force the utility of 80 equal to zero, we will have established

a reference point upon which to judge the utilities associated with other

values of 0 . In fact, this task can be accomplished by defining

or equivalently

u (dip u(di, + a(60 b)(00 c)

u (d - u(di, 8) + e(0 f)(00 g)

Recognizing that at the indifference point 130, u(di, 00) - u(d2, 80), we can

rewrite u (dip 0 in the form

u*(di, e) =

-a(6 - 00)0 - e) - 1

-e(0 - 00)(0 - g') i = 2

where c' 0 b + c 0 and g' f + g - Bo . Since our permissible linear

transformation allows us to specify a scale for utility as well as a

location, we may reduce the number of constants to be specified even further

by a transformation of the form

for a > 0 . Thus,

**
u (die e) u

*
(di, 0,/a

24)0
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u
**

(dV 0) -

-e'(6 - 00)(0 - g') i 2
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where 0 r b + c - 0o, e' = --, and le * f + g 0 . In order to determine

the remaining constants, c', e', and g', the decision maker needs to specify

other points on the two branches of the utility function. Although this

could be done directly by actually specifying the utilities associated with

(d, 0) pairs, we describe a method which is probably easier to use in most

situations. This method will frequently work in situations where the utility

of each decision seems to approach a maximum asymptotically as the deviation

between 0 and 6
o

increases. In this case, it seems reasonable to situate

our quadratic curves so that the convex side is up as illustrated in

Figure 4.2. This is equivalent to specifying that both a and e in our

original model, Equation (CO, are positive. We can now fix two of the

rcmaining constants by identifying 01 and 62 such that 61 is at the lower

.end and 0
2
is at the upper end of the feasible domain of 0 . Since we have

indicated that the utility approaches a maximum asymptotically as 0 approaches

these points, 61 and 62, it seems reasonable to require that the maximum

on the d
1
branch occur at 0

1
and that the maximum on the d

2
branch occur

at 92 . This requirement is equivalent to the following system of

equations:

d **u 01, 01. -(291- 0
0

c') = 0

0 =e1

d **
u (d2, -e'(2e2 eo g') *

0 * 0
2
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Figure 4.2

Quadratic Utility

Figure (a) illustrates a.quadratic utility function of the form of Equation (4.8) wtth constants a = 3,

b = -1, c = .85, e = 8.4, f = .7, and g = 2.0. Reparameterizing (a) according to u**(di, 6) leads to (b).

Reparameterization u (:1
i'

0) changes the zero poiat on the utility scale so that the utility of 6
o

is zero.

This is equivalent to specifying b = f = 80, c = -.9, and g = 1.95 in Equation (4.8). Reparameterization
o.
cou**(d., 0) then alters the scale of utility so that a = 1, forcing e to equal 2.8.

a
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Thus, c' = 201 - 00 and g' = 202 - 00 . This procedure assumes, as is true

in our examples, that large values of 0 make action d2 more desirable and that

small values of 0 make d
1
more favorable. Since the indexing of the decisions

is arbitrary, however, this restriction is not serious. The remaining

constant e' may now be determined by specifying a pair of state parameters

(0
3,

0
4
) such that u(d

l'
0
3
) = u(d2, el.). Since e' is the only unknown in

this equation, it can be easily determined.

To illustrate these computations, let us reconsider the example used in

the previous section with linear utility. In this example, the point at which

the decision maker would be indifferent whether he advanced (d
2
) or retained (d1)

the student was 00 = .75. Since 0 is the "true" proportion correct, the

minimum feasible 0 is el - 0 and the maximum is 02 = 1.0. Thus, solving

c' and g' in the equations above, we find c' = -.75 and g' 2, 1.25. If, in

addition, the decision maker feels that u(d .7) = u(d2, .85), say, then

e' can be found by solving the equation

Or

(.7 .75)(.7 + .75) = e'(.85 .75)(.85 - 1.25)

e' = 1.8 .

The utility function is illustrated in Figure 4.3. In general, the final

decision will be for action d
1

if

e[u**01, > etu**(d2, 0) ]

where the expectation is taken with respect to the posterior distribution of

0 . Thus
'
d
1

is to be preferred whenever

Or

0
2
+

0
e

0
- ct) < etc:2 e'(u - e

e
-8')

0

* *(d1,
**

u (d1, pe) se > u Ue) e'020 '
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1 .o .1

90

.2 .3 .4 .5 .6 .7 .11 _ .9

Figure 4.3

Quadratic Utility

This figure illustrates quadratic utility as transformed by u
**0

i'
9). In

this example, e' = -.75, le = 1.25, e' = 1.8, 0
o
0 .75, Al = 0.0, and e

2
= 1.0.

** **
Observe that u (d

l'
0) approaches its maximum at zero while u (d

2'
0)

approaches its maximum at one. Also note that u(di, .7) --1 1102, .85).
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whore
s`e

and a
2
are the mean and variance of the posterior distribution of the

state parameter 4 . This result may be interpreted as calling for action

d1 whenever the utility of d1 at pe is greater than the utility of d2 at

p
0
plus a correction factor. The correction factor depends upon the posterior

variance of 0 and consequently is a measure of the probable deviation of 0

from 40 . For our Individually Prescribed Instruction examples, this relation-

ship has important consequences. It indicates that for decision purposes,

all we need from the posterior distribution of 0 is its mean and its variance.

In applications, we can often readily obtain these values, or approximations

to them, even when the posterior distribution of 0 does not exist in closed

form.

4.4 Exponential Utility,

Linear and quadratic utility functions have played important roles in

applications of decision analysis. As we have seen, linear utility requires

only that we evaluate the posterior mean, while quadratic utility requires

both the posterior mean and variance. These simplifications of the decision

process are extremely important, especially when the posterior distribution

of 0 is of a complicated form. Often we are able to estimate the mean and

sometimes the variance of e, even when the posterior density itself does

not exist in

Linty also

With many of

this special

the function

utility by a

closed form. As we sh:il see in this section, exponential

has a simplifying property which makes it particularly useful

the standard posterior density functions. Before illustrating

property of exponential utility, we will exhibit the form of

and perform our usual simplifications. We define exponential

function of the following form:

205



c - a * exp{b0) i = 1

u d 0) =

c f * exp{-g0} i = 2

72

(4.9a)

where the constants a, b, f, and g are positive. Notice that this is not

the most general form available, since we require that a, b, f, and g be

positive and that the same constant c appears under each decision rule.

Although this simplification is made so that the estimates of the constants

are more easily obtained, it has certain implications which the would be

user should keep in mind. This particular formulation requires that for

decision d1, utility is a decreasing function of the state parameter 0 .

On the otivIr hand, for decision d2, utility must increase with increasing

0 . To see this, all we need to do is rewrite u(d2, 0) in the form

u(d2, 0) = c fiexp{g0}. Clearly as 0 increases, f/exp{g0} approaches zero.

That is, as 0 increases, the contribution of the second term to utility

decreases rapidly, with u(d2, 0) approaching c from below as an asymptote.

A similar argument with respect to u(d1, 0) shows that the utility of

decision d
1
also approaches c from below, but this time with decreasing 0 .

This relationship is depicted graphically in Figure 4.4. Using our now

familiar permissible linear transformation to eliminate some of the unknown

constants, we let

u
*
(d

1
0) = fu(d

iv
0) - (c - a * exp{b0

o }))
a * axgbe }

Since a * exp {b00} n f * exp { -g00 }, we have

exp(b(0 - 0)) i = 1

exp{-g(0 - 0)} i = 2

2 06

(4.9b)



(a) (b)

Figure 4.4

Exponential Utility

Figure (a) illustrates u(di, 0) from Equation (4.9) with a = 0.1, b = 3.5, c = 2.0, f = 3.5, and g = 1.24.

Figure (b) is u* (di, 0), the reparameterized form of figure (a). Upon reparameterization, the utility of

00 is zero and the scale is changed so that c = a = f = 1.0. In its reparameterized form, u (di, 8), at

exponential utility function is conpletely determined once 60 and the slopes at 60, b and g, of its two

branches are specified.



When the decision maker turns to fixing the two parameters of the utility

function, b and g, he must specify the precise utility of at least one point

on each branch of the utility function in addition to 00 . That is, he must

specify a pair of points ((01, c1), (02, c2)), such that u(d1, el) . ci and

1102, 02) = c2 . The reader is cautioned that this is not equivalent to what

we have done in the past when we specified points (01, 09) such that

u(di, 01) = 1102, 02). With exponential utility of the form of Equation (4.9),

we must actually specify the values cl and c2 (although they may, of course,

be equal). Once this is done, the parameters b and g are completely determined,

for we have

and

1 - expfb(01 - 00)) = ci

- exp(-8(02 - 60)) c2

Upon taking logarithms of both sides and solving, we have

and

b
(0
1

- 0
o
)

9.n (1 - ci)

tria - c2)

gm- {02-
eo)

(4.10)

(4.11)

From these equations and the restriction on our model that b and g

be positive, we see that if 01 < 00 and 02 > 60, then c1 and c2 must lie

between zero and one. This is completely reasonable, however. In examining

the transformed utility function, we see that it is zero at 00 and increases

to one as 0 approaches either - co or + cc. for decisions di and (12, respectively

(see Figure 4.4).

2O8
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Probably the easiest way to specify cl in applications is to determine

01 such that the utility of (d1, 01) is half way between the maximum possible

utility under d1 and the utility of (d1, Bo). By specifying a similar point

6
2

under d2, the decision maker can check his coherence by observing whether

u(d1, 01 ) = u(d2, 0
2
) subjectively. Having established his utility function,

the decision maker will prefer decision d
1
whenever

8[1 - exp {b(0 - 00)} lx] > 8'41 exp{ -g(0 - 00)}

But since expectation is a linear operator, this condition is equivalent to

preferring d
1
whenever

1 - e[exp{b(0 - 00)) Ix] > 1 - elexp{ -g(0 00)} x/

or

exp{-b00} E[exp{b0) lx] < exp {g00} e[exp{ -g0} lx]

or

exp{ -(g + b)00} t[expfb0) Ix] < E[expf-g} lx]

But E[exp{t0)] M(t) has special significance for mathematical statisticians.

In the statistical literature, M(t) is referred to as the moment-generating

function for 0 . And because of the importance of these moment-generating

functions, the integration necessary to evaluate the expected value has

been worked out for most standard density functions. Therefore, if the

posterior. distribution of 0 is one of the standard densities (Normal, Uniform,

Triangular, Gamma, and others), the final stage in the decision-making process

is merely a matter of "plugging in" the parameters of the posterior distribution

on 0 and those of the utility function. By reformulating the decision criterion

in terms of moment-generating functions, we see that decision d1 will be

preferred whenever expf-(g + b)0 M(b) < M( -g).



Returning to an example considered in Section 2.3, we assume that the

posterior distribution of 0 is normal with mean pe = (To
2
+ x+)/(o

2
+ (0) and

variance
2
=

2
(0/0 + o

2
). Since the moment-generating function for a normal

0

variable is given by M(t) = exp(tpe + t24/2), decision d1 will be preferred

whenever

or

exp(bp
0

+ b
2
0
2
/2 - (g + b)00) < exp( -gp

0
+ g

2
oe/2)

pe < 60 + (g b)oe2 /2 . (4.12)

That is, the retain decision is preferred if the mean of the posterior

distribution of 0 is less than 6
o
plus an adjustment which depends upon the

variance of the posterior distribution and the relative utilities of the

two decisions. Whether that adjustment is positive or negative, depends

upon the sign of g b . Since b and g are the magnitudes of the slopes of

the utility function at 00 for d1 and d2, respectively, the difference is

a measure of the relative speed with which utility is changing on its two

branches as 0 moves away from 00 Thus, if g > b, the utility of od,, is

changing more rapidly in the vicinity of 00 than the utility of d1 . That

is, when g > b, making a false, positive error will be relatively more

expensive than an error of the false, negative variety for equal distances

from 0
0

. Consequently, the decision maker adjusts his critical point for p
0

in a positive direction.

Let us reconsider a slight modification of the known variance numerical

example presented in Section 2.3. As before, we assume that:

(1) 0(6) - N(80, 25)

(2) p(x10) N(0, 16)

(3) 00 - 75

(prior on 0)

(likelihood or model density)

(critical criterion score).

2l0



77

0 66 44 72 75 78 at 84 87

Figure 4.5

Exponential Utility

This figure illustrates exponential utility in the form of Equation (4.9b).

In this example, we assumed that 01 = 70 and 02 = 82. Applying Equations

(4.10) and (4.11), we concluded that b is equal to .14 and that g is equal

to .10. The posterior distribution of 0 is normal with mean equal to 83

and variance equal to 9.76.
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We further assume that the student obtains a test score of x = 85. Thus,

the posterior distribution of 0 is normal with mean equal to 83 and variance

equal to 9.76.

Next, our decision maker mudt specify his utility function. On the

presumption that he would be satisfied with an exponential description like

Equation (4.9), our decision maker would follow the procedures outlined in

this section. His first task would be to subjectively determine 01 such that

the utility of (d1, 01) is half-way between u(di, 00) and the maximum possible

utility on the d1 branch. Next he must similarly determine 02 . Assuming

that e
1
- 70 and 0

2
= 82 and that these are coherent, Equations (4.10) and

(4.11) indicate that b .14 and g = .10. Applying Equation (4.12), we see

that the student will be retained if pe < [75 + (-.08)9.76/2] = 74.61. Since

p
0
= 83, the decision maker will certainly advance the student. This situation

is illustrated in Figure 4.5.

4.5 Squared Exponential Utility

The final family of utility functions that we will consider foi the

two-action problem, will seem somewhat restricted in the amount of flexibility

that it permits the decision maker. However, it is very compatible with

normal posterior distributions and is frequently useful when other posteriors

may be approximated by normal distributions. It is also a rather natural

family of utility functions when the problem is an estimation problem and the

act and parameter spaces coincide. The model for squared exponential utility

is

u(di, 0) is 1

b(e - e0)2

- exp2

0

where a and b are positive. 212

i = 1 and 0 < 8
o

i = 2 and 0 > Co

otherwise

(4.13)
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Turning tt the specification of the parameters a and b, we follow the

same procedure as in the case of exponential utility. That is, we specify

the utility of at least one point other than 00 for each branch of the

utility function. If these points and their utilities are represented by

the pairs ((01, c1), (e2, c2)), then

and

1 - exp(- 2 (01 - 00)2) = el

1 - exp(- 2 (e2 60)2) c2 .

Upon taking logarithms and solving, we find that

and

a

e )
2

2 tn(1 cl)

b -

(e2 ec)

2

2 tn(1 c2)

From these equations and the restriction on our model that a and b are both

positive, we see that cl and c2 must lie in the interval 03, 1). Examining

Figure 4.6, we see that this is reasonable, for squared-exponential utility

as described by Equation (4.13) is bounded between 0 and 1.

As with exponential utility, one way to determine (01, cl) and (02, c2)

is to look for those points on the d1 and d2 branches such that

u(d
I.'

) u(d
i'

0 0) = max(u(d
i°

e)) u(di, e
i
)

0
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Figure 4.6

Squared Exponential Utility

This figure illustrates squared exponential utility in the form of

Equation (4.13). In this figure, a equals .05 and b equals .01. Note

that the utility function ie bounded between .'ero and one, with u(d1, 0)

equal to zero for 0 > 00 and u(d2, 0) eqiial to zero for 0 < 00 .
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That is, try to determine those points (di, ei) which have desirability

approximately half-way between the desirability of (di, e
o
) and the maximum

possible desirability under that decision. It will then be possible to

verify the consistency (coherence) of these specifications by comparing

u(di, 01) u(d2, 02), subjectively. If large differences are believed

to exist in the payoff of these two situations, then some reconciliation

will be necessary.

Action d
1
will bo preferred if the expected or average posterior utility

under d1 is greater than that under d2 . That is, if

f+c6

u(d
l'

0)p(01x)d0 > 110
2'

01)(01x)d0 .

-co

Since u(d
l'

0 and u(d2, e) are non-zero only in the regions 0 < e
o
and

e > e
o
, respectively, .his inequality may be rewritten in the equivalent

form

e
o re'

u(di, 0)p(01x)d0 >
}u(d2,

Op(01x)d0 .

.40 ..)0 o

These integrals will be tractable if the posterior density of 0, p(01x),

is normal with mean p
e

and variance 0
2

'
In this case,

1
a(0 00)

2
(0 - u @)

u(d1, 0)p(01x) = - 1 exp
2

exp
2

12WO:
20

e

which may be rewritten in the form

215
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u(dL, 0)p(01x) exp [i 1 )

/27;73 I

y P
2ue

0

-
(a + 00

2
) (fago + (le2 40)1

1
- exp xP (0 - 1.1

2 -2 -2 o 6

dO 2
a + 00 a + 06

6

The first term, of course, is nothing but a normal density with mean ue

and variance 0 Ignoring that part of the second term which does not depend
0

upon 0, we see that the second term is proportional to a normal distribution

with mean (a0
o
+ a

-2
p
0
)/(a + 0 ) and variance (a + 0

-2
) . Therefore,

4Nu(d1, 0)1x1 may be written as

6

gp[u(di, 0)1x) i
02

lo
exp

C (0 U6)2
exp de

20/27,

6

2

a0-2

6

exp ---2:1)(60 - 1,0)2

a
(0

6
+ a)

(
+ 00

*_1/0-62
big

exp
0 o 0 0

a0 + 0-2II

a + 0-2

-
0

d 0

e
o

-co

But each of these integrals is nothing but the probability in a tail area

C a normal distribution. Therefore, we may express these integrals in

terms of the percentile rank of 60 . Thus, by standardizing a in each

integral so that each distribution is unit normal, we see that

21U
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"Ix) mg PR 112i100 8 to (al,
lo3

8

-2

aeo + cre PO

-2 -2
a +

1
h Hai - Pe) PR -w7ET a + a

0
(a + ae )0006 + a

where PR(z) is the percentile rank of z with respect to the unit normal

distribution.

Replacing a by b and reversing the limits of integration, we have a

similar expression for the posterior expected utility under d2 . Therefore,

our decision criterion may be written in the form: "Choose d1 if

-2

11

PR(z.)

0
expli- 1/2 )÷ --°PR(zo) 1 (e0 - u )2

/
.]

17771
(

0
7-77 a + a

(setae + a)

-
[100 PR(z

2
)) ae

2

> [100 - PR(z0)1 exP[- 11 (72) (eo Pe)]
+ b) e

+ b

where
eo Pe

zo

ae

zl

2,

e

a0 + a-2u
o 0 0

a + a-2
0;2

(en
(a(a + etio2)-11 ( a )

be + a
-2

u
0 e

eo

b + a
-2

o
-2

0

(b + 0-132)41 (b.,,TC.2)
(eo e)

217
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We prefer d2 when the direction of the inequality is reversed. Although

Equation (4.14) looks rather frightening, it is really rather simple to use

once you know the parameters of the utility function and of the posterior

distribution on 8 . Of course, those decision makers with access to a

computer will find its application trivial.

218
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5. A Three Action Example

Section 4 was built around the analysis of a decision problem in which

two actions were available to the decision maker. Several families of utility

functions were studied and the ideas were illustrated with an example involving

the decision to advance or retain a student at a certain level in a sequential

chain of instructional steps. Although the notation becomes more complex and

the computation a bit more tedious, there are no fundamentally new ideas when

we assume that there are three (or any finite number)of options open to the

decision maker. In this section, we will illustrate this somewhat more general

problem by using natural extensions of two of the families of utility

functions discussed earlier.

5.1 Threshold Utility

Consider the following slight modification of the Individually Prescribed

Instruction example discussed in Section 2.1. In the previous example, when a

student completed a unit of instruction, he was considered a master or a

nonmaster and was advanced or retained on the basis of expected utility.

In this example, we merely extend the number of levels of mastery by further

partitioning the nonmasters into two groups. The first group contains those

nonmasters whose ability is close to the cutoff point separating the masters

from the nonmasters. The second group contains those who apparently missed

the whole point of the lesson. The state of a student being a nonmaster of

the poorer variety will be denoted by thethe better nonmasters will be

denoted by 02; and, the masters by e3 .

For purposes of this example, we assume that there are only three actions

available to the decision maker. The student may repeat firth the present and

the previous instructional units; he may repeat or'y the present unit; or, he

may advance to the next unit.
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With these specifications, we may now define the usual utility function by

the following table.

d
1
(back one)

d
2
(retain)

d
3
(advance)

ei

Table 21

u(di, e
j
)

e2 e3

u
11

u
12

u
13

u
21

u
22

u
23

u
31

u
32

u33 I

As we have mentioned before, determination of these utilities is not an easy

matter. In Section 3, we described one paradigm for their determination

which might be helpful. However, we do not claim that it is the last word

in utility specification. Nevertheless, in what follows, we will assume that

the decision maker has coherently specified the utilities.

After the test score x is available, the decision will be made by selecting

that action di, i = 1, 2, 3 which maximizes the posterior expected utility

3

E u(di, 8pP(0j1x)
i=1

We might think of this problem in terms of specifying two cutting test scores

x
o

and x
l'

where x
o

< x
1

. Then for x < x
o

, action d
1
will be taken; for

xo < x < xl, action d2 will be taken; and, for x 7 xl, action d3 will be taken.

To determine the critical points xo and xl which will divide the range of

test scores into a dl, a d2, and a d3 region, we return to a technique described

in Section 2. We consider the posterior distribution of 0, p(01x), as a



87

function of x . Since x
o
is the indifference point with respect to decisions

d1 and d2, at xo the expected posterior utility under d1 must equal the expected

posterior utility under d2 . That is,

3 3

E die(eilx0) :1 112e (0j
Ix
o
) .

j=1

Simplifying this, we see that xo should be determined so that

(u11 u13 u23 u21)1)(81 Ixo) (u12
u22

u13 '123)1(621x°)

(1/13 1/23) °

Similarly, xl should be determined so that

(u31 1133 u23 1121)1)(011x1) (u32 u22 1133 1123"21x1)

(5.1)

(u33 u23) = 0 . (5.2)

In order to illustrate how to use Equations (5.1) and (5.2) in applications,

we return to the. example in Section 2.3 where posterior to our observation x,

the ability parameter 0 was continuous and, in fact, normally distributed.

There we described the posterior distribution of 0 by

[
p(01x) - N .1:12tfx 422---

02 +4 cr& + 41

For purposes of this example, we also redefine the mastery levels 01, 02, and

e3 in terms of critical points T
1

and T
2
on the ability scale (0). We let

0
1.

{010 < T1 }, 02 . (olTi < o < T2}, and 03 = (010 > T2}. Then transforming

the posterior p(01x) into a posterior on the normal deviate z, we see that
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where

Pr(0
1
lx) = Pr(z < z(T1, x)1,

Pr(021x) = Pr(z < z(T2, x)] - Prix < (T1, x)],

Pr(0
3
1x) = 1 - Pr(z < z(T

2'
x)]

z(T

2

T - .r(1-x
i

a
2
+ 4

x) 2 2
10 + 0 )1

So we may rewrite Equations (5.1) and (5.2) in the form

(u11 + u22
u21 u12)Pr

tz < z(T1, x
o
)1

(u12 u22 u13 u23)Priz < z(T2' xo))

+ (u13 - u23) = 0

and

(u31 u22 u21
u32)Pr(z < z(T1, xi)]

(u32 u22
433+ u23)Priz < z(T2, xi)]

+(u
33

- u
23

) 0 .

88

Each of these equations now needs to be solved iteratively for xo and xi .

It is recommended that Ti and T2 be used as first approximations to xo and

xi, respectively.

We now turn to a modification of an example considered in Section 2.3

to illustrate these ideas. Assume that we have the following situation:

2 944 4,
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(1) 1)(6) . N(80, 25)

(2) p(x10) - N(0, 16)

(3) T
1
= 60 and T

2
= 85

(4)

d
1

(back one)

d
2

(retain)

d
3

(advance)

0 < T
1

7

2

1

1

u(di, 0j)

T
1

< 6 < T
2

6 > T
2

4 0

6 1

3 5

Thus, by applying Bayes theorem, the posterior distribution of 0 as a

function of x may be written in the form:

80(16) + 25x 25(16)
p(0Ix) - N

16 + 25 ' 25 + 16

Substituting into our equations for z(Ti, x), we have

and

60
1280 + 25x

-
z(T

1
, x) =

3.123
41

9.214 - .195x

z(T2, x) =

85 ..
1280 + 25x

41
= 17.218 - .195x .

And we must solve the equations

3.123

.07 PR(9.214 - .195x0) - .01 PR(17.218 - .195x0) - 1 = 0

.02 PR(9.214 - .195x1) - .07 PR(17.218 - .195x1) + 4 = 0 ,
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where PR(z) equals the percentile rank of z . Iterating to a solution,

we find that x
o
= 52.7 and x

1
= 87.4. So the decision maker will choose

decision d
1
and have the student repeat two units if x < 52; will choose

decision d
1

and have the student repeat the current unit if 53 < x < 87;

and, will choose decision d
3
and advance the student if x > 88.

5.2 Linear Utility

Analogous to the situation in the two-action problem (see Section 4.2),

we define linear utility to be linear in 0 for each decision separately.

Thus, linear utility in the three decision situation is defined by a

function of the form:

e + f0

u(di, g + h0

k + me

(5.3)

If we assume that our decisions can be indexed so that decision d1 is most

desirable when 0 is small, so that decision d2 is most desirable when 0 takes

intermediate values, and so that decision d
3

is most desirable when 0 is

large; then the solution of the three action problem is a straightforward

extension of that offered in Section 4.2. Applying our permissible positive

linear transformation, for m > 0, we let u
*
(d 0) = [u(di, - kJJm .

Thus,

where

u
*
(d

i
, 0) .

e

I

gel + fle i = 1

l + h10 i= 2

0 i = 3

e - k f, k
= ; g ; and h' =h

224
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And since we have four constants to estimate in specifying our linear

utility function, we need four ordered pairs (0i, 03) such that

u (d
i'

0
i
) = u

*
(d

j'
es). Two of these pairs are provided by the

breakeven points T1 and T2. At these points, we have

and

e' + f'T
1
= g' + h'T

1

+ hIT
2
= T

2
.

Thus, we need only two additional pairs to completely specify the utility

function. The resulting linear system of four equations in four unknowns

can then be solved for e', f', g', and 0.

When we turn to maximizing expected utility, we now have three equations

to consider. In fact, depending upon whether e' + f'pe, g' + h'pe, or pe is

largest, we choose decision dl, d2, or d3, respectively. Graphically, this

is clearly illustrated in Figure 5.1. All the decision maker needs to do is

examine the utility of each decision at the mean of the posterior distribution

of 0, choosing that decision with the highest value.
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r-Tar 65 70 7.5 -

Figure 5.1,

Linear Utility in a Three-Action Problem

This figure illustrates linear utility in the form of Equation (5.3) with

constants e * 60, f * -.9, g * 15, h * -.2, k * -.90, and m * 1.2. As in the

two action problem discussed in'Section 4.2, the decision depends only upon

the utilities of each decision at the posterior mean Pe . In this

illustration, since u(d3, ne) > u(d2, pe) > u(d1, ne), extensive form analysis

will lead our decision maker to choose action d3. In terms of T1 and T2,

action d
1
will be taken whenever u

0
< T1; action d

2
will be taken whenever

T, < po < T2; and, action d3 will be taken whenever no > Tl.
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6. Preposterior Analysis

Information is never free. For example, information about the mastery

level attained by a particular student is obtained by testing, interviews,

or class recitation. Such activities spend the time of the student, spend

the time of the teacher, and tie up facilities. If there are only meager

rewards and penalties for correct and incorrect decisions, it may be wasteful

to purchase information whose cost may exceed the gain in expected utility.

Suppose that a decision maker has (1) a prior distribution on 0, p(e),

(2) a utility function u(di, 0), and (3) a potential experiment which, if

carried out, will have outcomes x with model density p(x16). Before

colle..ting the data, the decision maker wants to know the e:ctent to which

his efforts are likely to be rewarded. That is, he wants to know whether

the additional information contained in the potential experiment is likely

to be sufficiently "valuable" to justify obtaining it. Bayesian decision

analysis provides the framework of preposterior analysis for studying this

question.

The logic of preposterior analysis is simple and can be readily under-

stood by considering the following outline:

(1) The decision maker can attach a "value" to the information

contained in his prior, p(0), by calculating the expected utility

of the optimal decision. That is,

Value [p(0)] 2, max u(di, 00(6)d6 .

d
i

(2) Assume for the moment that the experiment has already been carried

out and the result x obtained. If this were the case, then

analogous to the above, the decision maker cLuld attach a value

to the information contained in his posterior. That is,

Value Welx)] Ns max u(di, 0)p(01x)dx .

22
d,

7
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(3) Continuing as if the data had already been collected, our decision

maker could now calculate the "value added" by the experimental

results (i.e., the increase in expected utility after the addition

of the data).

Value Added = max u(di, Op(01x)de - max u(di, 0)p(8)0 .

di di

(4) Since, in'fact, the experiment has not as yet been executed, of

course, the value added cannot be determined. Nevertheless, the

decision maker may consider the value added to be a function of

the observation random variable X. In the jargon of decision

theory, value added considered as a function of the random variable

X is referred to as the conditional value of sample (experimental)

information and is denoted:

v(e, x) = max

J
u(di, Op(01x)de - max r u(di, e)p(e)de .

d d

It is conditional because it can be calculated only when x is known.

(5) Now since X is a random variable with a probability distribution

p(x):P(e)p(xle)de, it is clear that v(e, x) is also a random

variable. If the density of v(e, x) were a simple function, it

would be useful at this point to examine its location parameters

and even credibility intervals. These statistics would describe

the decision maker's prior beliefs about the probable increases

in utility to be gained from sampling. In most applications,

however, the density of v(e, x) is not a simple function. Although

this complexity precludes most descriptive indices, in many

instances, it will be possible to determine the mean of the

distribution of v(e, x). In the decision theory literature, this

228
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mean is commonly referred to as the expected value of sample

information and is denoted

v(e)'= v(e, x)p(x)dx

whert p(x) is the marginal prior density of X.

(6) The decision maker may now compare the expected value of sample

information with the "cost" of performing the experiment and

judge whether or not the experiment is likely to be worthwhile.

Before illustrating preposterior analysis with a numerical example,

one central point must be made. In step (6), the decision maker must

compare an expected utility with the cost of obtaining experimental infor-

mation. It is critical that these two quantities not only be measured in

the same units, but also that their respective scales have the same origin.

If the expected value of experimental information, v(e), is measured in

arbitrary "utile" units while the cost of that information is in dollars

and cents, a sensible comparison cannot be expected.

We will illustrate preposterior analysis with an example. We let

1 .

-(3/5)(0 - 75) i l

u(d
i'

0) t

(7/5) (0 - 75) i w. 2

As in our previous examples, 75 has been selected as the indifference point

between the acts of retaining (d1) and advancing (d2) the student. As

expected, the advance decision (:12) is positively related to ability (0)

while the retain decision (d
1
) has a negative relationship.

Suppose further that the prior information about 0 has been quantified

in the form of a normal distribution with mean 78 and variance 36. Recall

that in Section 4.2, we demonstrated that with linear utility, the optimum
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decision depends only upon whether or not the mean of 0 is greater than 60 .

Obviously in this c.se, with only prior information at the decision maker's

disposal, the advance action will result in the highest expected utility.

Thus,

j
Value[p(0)) = (7/5)(e 75)1)(6)d0

- u(d
2' 110(prior) ) = (7/5)00(prior) 75)

where 110(prior) is the mean of the prior on 0 . If the experimenter had carried

out the experiment, the highest expected utility using the experimental

results to help select the action would be

1,...-

7173/5)0 - 75)p(01x)d0 if
11e(post)

< 75

Value [p(0Ix)]

f(7 /5)(e - 75)p(01x)d0 if
110(post) 175 '

Since the utility function is linear in 0, the expected utility of decision

d
i
is merely the utility of the expectation or mean of 0 . Thus,

u(d
1

,

110(pest) ) = -(3/5)(110(post)
- 75) if 110(post) < 7

Value [p(01x)] =

u(d
2' 110( st)

) = (7/5)0
0(post) 75) if PO(post) .- 75

The conditional value of sample information may be given by

u(d1' PO(post)) u(d2' PO(prior)) if Pe(post) < 75

v(e, x) =

u(d p
2' 6(post)) - u(d2, u -0(prior)) if PO(post) 1- 75 '

And the expected value of sample information is given by
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V(e) itcpu(dil Pe(post) ))P(x)dx

all x.

such that

P8(Post)
< 75

.1. [u (d2, Pe(post)

all x
such that

>
PO(post)

75

97

)1p(x)dx

fu(d
2'

p
0(prior)

)p(x)dx .

Thus, in order to evaluate v(e), all our decision maker needs to do is

partition the range of x into two subsets: The first containing all x

which will lead to a posterior mean which is less than 75, and the second

containing those x which force u
0(post)

to be greater than 75. If, for the

purposes of this example, we assume that the likelihood of our sample may

be described by a normal distribution with mean 0 and variance 25, then

applying Bayes theorem, we see that the posterior. .distribution of e is of

the form

P(elx) -
N[36 x + 25*78 36*25

25 + 36 ' 36 + 25]

And so the relationship u < 75 is equivalent to the relationship
'0(post)

x < 72.92. Thus, the expected value of sample information is

v(e) m u

f
(d-
1

, P
0(post)

)p(x)dx + u(d2, Pe (poso)gx)dx - u6:12, Pe(prior)) P(x)dx .

72.92 +to

72.92

Let us pause here for just a moment and examine this equation. The first

thing to notice is that we are integrating over a range of test scores X

from - to + . Conceptually, this may seem a little troublesome, for in

most applications, test scores are bounded within a relatively small range.

231
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Recall, however, that we assumed the model density was normal in form.

This assumption implies that every x (from - 0, to + as positive

probability. Therefore, each x must be considered when taking the expectation.

Although admittedly, tris is a problem conceptually, in applications it is

not very important. As

specified, there should

outside its permissible

In this particular

Therefore, p(x) - N(78,

long as the prior distribution on 0 is carefully

be effectively zero probability that x will lie

range.

example, we have o(0) - N(78, 36) and P(x10) . N(0, 25).

61). So that in this case, X has very little proba-

bility of falling outside the range (55, 101). Returning to our expression

for the expected value of sample information, we find two integrals of the

form:

u(d, no
(post) )p(x)dx .

_I-
We know that u(di, poposo) is linear in 110(post)

x, this implies that u(di, 00(post)) is also linear

substituting
PO(post)

(36 x + 25 * 78)1(36 + 25),

written in the linear form

'
u(di u

O t
. )
(post)

and so, v(e) can be written as

4°

Since P0(post) is linear in

in x . In fact, by

u(d
i
, p 6(post) ) may be

-(315)(.59x - 43.03) if i = 1

(7/5)(.59x - 43.03) if i = 2

72.92

v(e) =

J
(7/5)(.59x-43.03)p(x)dx - (3/5)(.59x-43.03)13(x)dx - u(d2,

72.92 . W

,

i
16 (prior)*

)

where p(x) - N[78, 61]. It can be shown that the following relationship holds.
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-.01(

a
cp

00

- d)
b(cx - d)p(x)dx =

b(1
PR(a) + bon[11-:.4- ; 0, 1]

o
.

where

p(x) wp, 02]

PR(z) = percentile rank of z

n [I
2---2- ; 0, i = the ordinate or height of the unit normal

curve at
p -

a

Using this relationship, we may rewrite v(e) once again

v(e) . (7/5) (.59.78
100

- 43.03)
[100 - PR(72.92)) + (7/5)147. n[-.65: 0, 1]

(.59.78
10

-
0
43.03)

-(3/5) PR(72.92) - (3/5)1(7.n( -.65: 0, 1)

-(7/5)(78 - 75)

= .46 .
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1. Introduction

In Individually Prescribed Instruction it has been proposed (Novick,

Lewis, and Jackson, 1973; Hambleton and Novick, 1973) that the decision

as to whether or not the j-th student has successfully mastered a unit of

instruction should be based on the aposteriori probability that his mastery

proportion (aj) is greater than some specified proportion (To) and on the

losses associated with false-positive and false-negative decisions. It

was also proposed that the posterior distribution for each 2j should

benefit not only from the prior and sample information on each person j,

but also on the collateral information gained from the observations on

all other persons.

The rationale for this kitai of analysis was first given in an

educational context by Kelley (1923, 1927) and later reproposed by Novick

(1970), Novick and Jackson (1970), and by Cronbach, Gleser, Nanda, and

Rajaratnam (1972). The mathematical structure for the required Bayesian

Model II solution was given by Lindley and Smith (1972).

In their recent paper, Novick, Lewis, and Jackson (1973) developed

the specific solution for the problem of estimating binomial proportions

in m-groups. The observable random variables--proportions of "successes"

pj = xj/nj, j = 1, 2, ..., m, where xj and nj are respectively, the number

of successes and the number of observations--were first mapped into a

set of new variables gj by an arc sine transformation. The variables

The research reported herein was performed pursuant to Grant No.
OEG-0-72-0711 with the Office of Education, U.S. Department of Health,
Education, and Welfare, Melvin R. Novick, Principal Investigator.

Contractors undertaking such projects under Government sponsorship are
encouraged to express freely their professional judgment in the conduct

of the project. Points of view or opinions stated do not, therefore,
necessarily represent official Office of Education position or policy.
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gj were then assumed to have a normal density function with mean

r--
y, = sin lYvj and variance v = (4n + 2)

-1
, where y, is the corresponding

transformed value of the population proportion of "successes" Then

the Bayesian Model II method which is based on the exchangeability

theorem of De Fitietti (1937) was applied to the analysis of the indirectly

observable gj. In the Individually Prescribed Instruction application,

the individual person is treated as the "group" and the test items as the

n replications.

The validity of the normality assumption on the distribution of the

transformed variables gj depends on the sample size nj. If nj is very

small, the normal approximation to the distribution of gj will not be

good. In practice, it was felt that for n,
J

> 8 this assumption will be very

satisfactory except for the tails. It may also be noted that the domains

of the distribution on gj and yj are bounded between 0 and , while the

normal distribution has unbounded domain. We recall that with a uniform

prior yj, the posterior distribution of is normal with mean and
:1'

Yj gj

variance (4 nj + 2)
-1

under the above appropriate assumptions. Thus, we

may wish to check whether the points which are + 2 standard deviations

from gj exceed 0 and w/2, respectively. It was found that for nj > 6

and 1 < xj < n 1, the points which are + 2 standard deviations from

the posterior mean lie within the (0, ) range. This implies that the

bounded domain of the distribution of yi should not be a major

disturbance in considering a normal approximation to its form. We

contend that in the m-group procedure, the collateral information

provided by other groups would have an equivalent effect of adding more

sample observations to the estimation of an individual group's proportion.

For this reason, we expect that the violation of normality in the cases

of small sample size will not be serious, provided all nj > 8. For

smaller sample sizes, a logistic transformation introduced by Leonard

should be considered, though this will require study.
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Regarding the problems of variance stabilizatian, the Freeman-Tukey

(1950) transformation was consideied superior to Anscombe's (1948)

transformation or the simple arc sine transformation, especially for

small sample size n The condition for the Freeman-Tukey transformation

to stabilize the variance is mw(1 w) > 1 . Namely, the true proportion
-1 II

1 4n
-1 ti

It should lie between II -
2

and II + . In general,

this analysis should be very satisfactory provided m > 15, n > 8,

sr < .05, and the above condition is satisfied.

The Bayesian procedure begins with an assumption that the set of

transformed values Y .is a random sample from a normal distribution with

mean pr and variance sr . The analyst's prior beliefs concerning the

parameters pr, sr are partially incorporated into the analysis by specifying

prior distributions for them. Specifically, pr and 4r are assumed to be

independent, having a uniform and an inverse chi-square (with v d.f. and

parameter X) density function, respectively. The assumption of a uniform

distribution for pr is more convenient than realistic but does not

significantly affect the analysis, provided m is reasonably large. We

shall consider this point later.

Under the above distributional assumptions and the Bayesian specifications

of one's prior knowledge, the joint probability density function (p.d.f.),

b(g, y, pr, sr), of the vector variables g' = (g1, gj, ..., gm),

y' = (yl, yj, ym) and scalar variables pr and sr is obtained as:

b(g, or, 4r)

-1/2() + m + 2)
exp(-1/2 Evi1(Yi g

i
)
2
+

1
(X + E(Yi p )

2
)1 . (1.1)

Novick, Lewis, and Jackson (1973) arrived at an explicit expression for the

posterior dehsity function of given g:
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b(lis)
[X

y.)21-41(v + m .
tYi 8i"21. (1.2)',

where y. = Eyi/m Following Lindley's approach, the joint posterior mode i
i

wastakenastheBaYesiemmodalestirateforYThecomponents.i3 of i

were then used to provide estimates for the group proportions u. .

The modal estimates of the proportions in m groups taken from the joint

posterior distribution from a Bayesian Model II analysis ar thought to be

more accurate than other estimates obtained from conventional methods.

Specifically, the vector estimate of y should be such as to maximize the

probability that all of the components y are near the true values y , i.e.,

the modal estimates minimize zero-one loss in m dimensions. In many applications,

however, one's primary concern is to be able to reach certain decisions

concerning individual groups (or persons). This would be the case with a

component additive-squared error or absolute-error loss function or component

threshold loss. Rather than be satisfied with a set of joint estimates,

one would, in such situations, like to have marginal means and variances

and to make some probability statements about each individual's ability

(or a group's level of achievement, etc.). In this context, it is desirable

to have knowledge of the marginal distribution of each yj . In the present

paper, we therefore address ourselves to the problem of describing the

posterior marginal distributions of yi To maintain certain mathematical

simplicity, the present paper will deal only with the case of equal n

Even with this restriction, the results will still be found applicable in

many educational situations (e.g., in assessing students' achievement in a

course or instructional unit by administering the same test to each member

of a class).
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2. Marginal Posterior Distributions for Gammas

An explicit expression for the marginal posterior density function for

Y does not seem to be obtainable from the joint posterior p.d.f., 18),

of y . However, the joint p.d.f. b(y § pr, sr) given by (1.1), with vi

replaced by v = On + 2)-1 for equal n, can be integrated with respect to

each yi (i 0 j, i = 1, ..., m) and pr to obtain the conditional posterior

p.d.f., b(Yji0r9 g), of yj given or and g:

b(yji0r, (, b(yj, Or, 0

[i

111($r + v)
a exp

2v(mOr
+ 3/)

(
3

..

0
r
g + vg.

or +v (2.1)
9

where g. =
1
--E g. . This expression is readily recognized as the kernel of
m

i

a normal distribution. Thus, the conditional distribution of y given 0

and g is normal with mean

and variance

Org4 vg.

§)

VOr +M 1
v)

Var(Yj I Or' 0 M 4. v 1 j = 1, , m

Now if 4r can be considered to be known rather precisely, use of the conditional

distribution will be justified and requisite constants can be obtained from

normal distribution tables. This will occur when m, n are large (e.g.,

m 50, n > 30), as indicated by the computations presented in Table 8

(see section 6). Note that the normal integrations with respect to ur

and the will be valid, provided the likelihood for these quantities is

each near zero outside the admissible range. With respect to u
r,

this means

that m the number of groups must be. large, perhaps m > 15. In the latter

case, this means that the nj must be moderate, nj > 8.
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Similarly, we can integrate b(1, g, ur, y w.r.t. y and or to obtain

the conditional p.d.f., b(OrIg), of or given g (Hill, 1965; Leonard, 3972):

m - 1
m...

2 -1 L

b(4) ) = (or + v
r
ig ) . exp{-114 + v) E (gi - g.)

2
}

i=1

-(1 + 1)
-

'Or

2
expPiOr

1
x] . (2.2)

Note that the second factor comes from the prior inverse chi-square distribution

of or, and the first factor is derived from the likelihood of or given its

sufficient statistic E(gi - g.)
2

. This first factor is the kernel of an
i

inverse chi-equare density displaced by an amount -v . A convenient way to

obtain analytically the normalizing constant, mean, and variance for this

distribution of 41,1g does not seem to exist. Hence, direct numerical

integration methods will be used for this purpose.

Inordertoobtainthemarginalposteriorp.d.f.for,one wouldY3

multiply the conditional p.d.f. of yj given or and g and that of or given 4,

as formulated in (2.1) and (2.2), and integrate the result w.r.t. or . Again,

an analytical solution to this problem does not appear to be possible. It is

necessary, therefore, to resort to numerical integration methods for computing

the marginal posterior means and variances of y3 dg . For this task, the simple

form of b(y
j
I.

r
, g) is he17ful in reducing the required computational efforts.

The computational procedure we propose begins with the f.itt that the r-th

moment of Lig equals the expected value (taken over Or given g) of the
4

conditional r-th raw moment of yj given or and g, viz,

(yrji) = 4,1§[(`-:(yrjitr, F.» (2.3)

In terms of {2.3 }, the marginal posterior mean of Yj is computed by the

following equation:
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Crs4 vs. 1

Pi (Yilg) r
f) Z:41

p* *gi + (I - p)g.,
r (2,4)

C..r(k71777 §)wf7H b(.01) d.r, and 1-p* &I,(F,1747 8where P*
r

$T
° 9r v

We note that 0 < p* < I, hence, (2.4) is in fact a weighted average of the

values g1 and g. . For notational convenience, we shall write for OrIg in

the sequel. Likewise, the expression e
0

f(0 r) is understood to be the
r

conditional expectation of the function f(0r) given g .

The posterior variance of y i8 obtained from the relation:

2
e = Var(y

I

1#) = (Var(y

I

10

r

, g)1 + itaQ1(yi(fr, 1)) .

sr

Thus, computationally, we use:

v((pr + m
71

C
'
sr r,

(Var(Y 10 9 1 'm [
r $r + v

(2.5)

, I' sr ) -1 e
v =1.7-1 + m v 1=17.)

Yr Yr Yr Yr

= p
*
v + (I - p

*
)m

-1
v for all j 99 I, m;

(2.6)

Wrie(Y 1$r, (e(Y 1$r, e reny , 0)))
2

I Or r sr r

): Orgi + vg. N\ 2

L Sr sr + v

.

ui i

0 2

[
r v

e'Or 0/7-i.v (g1 Pi) 4. Or + v (g' ull
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(8j
)2jr ('

41

Sr ) 2.]

j j r +V
g

),
('r 2]+ 2(gi

P "'i Or Or v)

(2.7)

To study the characteristics of the marginal posterior distribution of

Yi, one would also like to compute its coefficient of skewness. For this, we

first find the third central moment Q(y Ig) of t, given g from the general

formula:

Q(Yjig) t(yilg)13

- Myikr, Qo (Yikr,

+ 3 cov(var(yor, g), byikr, , (2.8)

(1'r

where Cov denotes a covariance. In the present case, NYil.r, g) = 0

since the conditional posterior distribution of yj given or and g is normal

[see equation (2.1)]. Furthermore,

Q Q:"(Y kr, g)]
r

(01yOr, g)
r

(yik, 033

g + vg.

<-41, 4r 4. v

3

E (i)(gj pi) [v(g. Pp] 3 I'

-I

t2=0 (Or + v)3

(2.9)

where Q401,1;(1)101,, 01 is the third central moment (w.r.t. or) of the

conditional expectation byikr, g), and
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Cov[Var(yil,r, 0, 8 (yilfr, g)]

4r

11(4,
r
+ V/M) +1,71;._

e. 4,

,r + vI' I'

4T 2 [-1 2

r (f +10-.1
v(gfp1).Eti, (17 m v (81-11i)+v2(g.-p1) t. +r

2

+ m-1 v3(g. - )
1e4,14 + v)

2
11

(2.10)

Hence, in terms of equations (2.5) to (2.10), one finds for the coefficient

of skewness di of the marginal posterior distribution of given g:

6i ' Q(Yil§)/[Var(y3lg)]3/2

In summaty, it is seen from equations (2.4) to (2.10) that given the

expectations with respect to fr of the functions fr(fr + v)
-k

(0 < t < k, k = 1, 2, 3) of andand the indirectly observable vector g, the

descriptive statistics of our interest - -the mean pi .variance a and index

of skewness d --for the marginal posterior distributions of the y can

be easily computed. To obtain th values bp

r

(e. + v)
-k

), we use numerical

integration methods. First, the right-hand side (r.h.s.) of (2.2) is

integrated w.r.t. fr (0 < fr < 40), and the reciprocal or the resulting value

is taken to give the proportionality constant for b(frig) in (2.2). The

particular integration algorithm adopted here is one which applies Simpson's

rule and uses local parabolic fitting to the curve being integrated in

computing the partitioned integral over a small range of the argument (in

this case, #0. For detailed information, the reader may refer to Ralston

(1965, p. 119).
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The next step involves computing the expectations of ft,k(y =

fr(¢r + v)
-k

. The same integration algorithm described above is employed

to obtain f

t'k
(fr) = roft,k(fr)h(frIpdfr . The mean, variance, and

indexasIminessforthemarginalposteriordistributionof are e then

obtained via equations (2,4) to (2.10). A Fortran TV program, MARPRO, was

written to carry out all these computations.

Finally, the exact posterior probability prob(sj > 11010 that the j-th

group's proportion is greater than or equal to some prespecifLed cutting

point go given the observed vector g can also be calculated. Explicitly,

prob(s olg)

prob(yj > yolg)

= f b(y.ledy.
Y J J

= rye f:b(yilfr, Ob(fris)dfrdyi

= f: [jf*ye b(ypr, OdY-4] b(¢rig)44r

T-
where y

o
= sin

1
( Yu

o
) is the arc sine transformation of no . The inner

integral for given ¢r is recalled to be the upper end cumulative normJ1

probability since b(yil,r, g) is a normal density. The outer integral

(4.r.t. 41,) is obtained using the same numerical integration algorithm

described earlier in this section. The program MARPRO also provides

these probabilities with various values of so (for .95 > no > .05 in'

steps of .05, terminating with a value go for which prob(vi > wo) > .99).
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3. Marginal Mean Estimates as Compared to Joint Modal Estimates

In the Novick, Lewis, and Jackson (1973) paper, the joint posterior

modal estimate (ii) for yj (the arc sine transformation of the proportion

Ty is obtained as a weighted average of 9 (the corresponding transformation

of the observed proportion p..3 Y)and the average y. of the estimated values

in m-groups. Explicitly,

Yj = pJgJ + (1 - p );. (3.1)

where

P4

[ i.)
2

m + v - 1 m + v - 1
I

=
i I

+ 'I, and Y. m E .

In the case where all m groups have same sample sizes, ni = n, equation (3.1)

can be simplified as

Pg3
- p)g. , (3.2)

since now Y. = g. Here p can be obtained as the solution of a cubic equation

[Novick, Lewis, and Jackson, 1973, p. 37, (6.18)]. It may be recalled that a

parallel expression for the marginal posterior mean (mj) of yequation (2.4)]

was obtained in the previous section. There the weight p* is the conditional

41)

r

'mean (w.r.t. +0 of 7-7-7:given g . (All estimates concerning us hereafter
'r

are understood to be the posterior estimates so that the word "posterior" will

be omitted in the sequel.)

Returning to (3.2), we may write

6r

T
+v p
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where = (A + E(i i.)
2
]/(m + v - 1) is an estimate of

r
Thus,

i

both equations (3.2) and (2.4) are special forms of the Kelley type

formula (Kelley, 1927). The only difference is that p is an estimate

of the reliability R( = .(4r + v) -11 based on an estimate of the

variance or, while p is the expected value (over or) of R given g

(i.e., a Bayesian mean estimate of R w.r.t. or).

At this point, we are interested in comparing the marginal mean estimates

.7"of""equivalentlY7r3 .athelnoportionsl3 Owith their joint

modal estimates (ii, or, equivalently, ii). This comparison relies solely on

the relative magnitudes of p and p* We have found rom our numerical

*
investigation that p is substantially larger than p for moderate n

This means that the marginal mean estimates are less regressed towards the

common value g than the joint modal estimates. Similarly, we would expect

that the marginal modal estimates would be less regressed to the common g.

than the joint modal estimates. In particular, the marginal modal estimates

coincide with the marginal mean estimates when the marginal distributions

are unimodal and symmetric. In the present context, the marginal distribution

of y . given g is unimodal and nearly symmetric. More discussions on the

shape of these distributions will be given in section 5. To elaborate the

above results, let us rewrite equations (2.4) and (3.2) as:

and

(Yilg) = Yi = g. p*(gj - go

g. + P(g g) .

Then it is obvious that if for a particular group j its observed gj iA grentel

- .

thatIta.,wettalleY>Y,cortverselYfor.<g. we (it'd 1 - 1 . tn term:,
J i

Ki
.1 i

of proportions, we obtain
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and

-
> n

j
if g > g.

vj < if gi < g. *
3

13

(3.3)

where and vs are estimates of the proportion vs based on and if

respectively. Numerical illustrations of the relation (3.3) are given in

section 6.

The reader is again reminded that the problem of estimation is closely

linked with the concept of loss function. Different estimators are chosen for

different loss functions. The substantial discrepancies found between the

joint modal estimates and the marginal mean estimates of yj suggest that the

defined loss function and the kind of decision (an overall decision for all

groups or decisions to be made on individual groups separately) are important

in the present estimation problem. If one is primarily interested in making

an overall decision for all groups (persons, in many applications to the

educational assessment practices) and zero-one loss is chosen, he would take

the joint modal estimates. On the other hand, if individual decisions

are the main concern and squared-error loss is considered appropriate, he

would choose to use the marginal mean estimates. For individual decisions

with zero-one loss the marginal modes would be the ideal estimators. However,

in the present context, these marginal modes would likely be close to the

marginal means.

One final comment on the effect of sample size n . The reliability

R
r( +r +

v)
-1 increases as n becomes larger, since v is (4n + 2)

-1 decreases.

Hence, both p and 0* (being estimators of R) are also expected to increase

with n . In the limit (n co), both will approach unity. That is, our

estimates will be based completely on the observed values gj . For this

same reason, the estimate y and y (or, u and I ) will differ less for

larger n . On the other hand, as m increases, more collateral information

is available. One would then be likely to shift more weight to the common

value in obtaining estimates for yj . Detailed numerical examples are

provided in section 6.
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4. Some Limiting Distributions for Gamma

In the Bayesian estimation of in-group proportions, it is said that the

remaining m - I groups in effect provide some sort of "prior information"

(strictly speaking, collateral information since it is not obtained prior

to analysis) for estimating the proportions in an individual group. In view

atasstatementonemaYhopetofindariapproximateexpressionforb.4 )(Y)

by first working with the posterior p.d.f. b(yill*, g) of given g, assuming

the vector y
iv.

0 (Y1, 72, ..., yj yj ..., ym) is known. This posterior

distribution can be obtained from equation (1.2) by making the substitutions:

and

where

m - I
(Y Y!)Y - Y. =

i . m i

* - *
E(yi - y.)2 E (Y

i Y.)
2
+
m
m

I
(Yj Y.)

2
,

i 1.0j

y*. m (m - 1)
-1

E y
i

iOj

Thus, we arrive at

since

i * * 2 m - 1 * 2 -31(v + m - 1)
b(y ly, g) a () + E (Y, Y.) + (Y. - Y.) )

J -
1.0i '

m j

(exPI-Isr
i
-1(Y. g

i
)2»

b(y
i '

ly* 0 . b(Y1s)
-

(4.1)

Thesecondfactoratherat.s.a(4.1)isthelikelillooda y given

gj and the first factor can be regarded as the contribution from the prior

information about provided by X (in addition to X and v, of course).
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Therefore, the posterior distribution of yj given g is explicitly available

if 7
*

is indeed known. In reality, it is unlikely to know y
*
beforehand.

At first thought, one may be tempted to substitute the joint modal estimates

y
i

(which are relatively easy to obtain as given in Novick, Lewis, and Jackson,

1973) for yi (i 1 j) in (4.1) to find an approximation for b(YJ Is). This

expedient step is appealing because only the mean y* and sum of squared

deviations E (y, y.* )
2
enter to the density function (4.1). This approach

i ,1j

was tried but found to be insufficiently precise.

Returning to equation (4.1), it is noted that the first term of its

r.h.s. is the kernel of a nonstandardized t-distribution with d.f. v* = v + m - 2

*
and parameters 1 y., K = M(M - 1)

-1
[X E (y

i
y.)

2
). (See Novick

i0j

and Jackson, 1974.) When m + 0, this t-distribution approaches a normal

* * * 2,
distribution with mean y. and variance $ = (X + E (y

i
y.) //(v + m - 4).

* i0j
Consequently, b(y

j
ly, g, in + 0), being proportional to the product of a

normal likelihood and a normal prior density, is itself a normal density.

We conclude from this standard Bayesian result that the limiting (m 0)

posterior distribution of y given g, for known y o is a normal distribution

* * *
with mean E. (y ly*, go m = gj

3
+ v.y.)/(f + v ) and variance

Var(y fy
*

g, m 0) = v
*
/(4)

*
+ v ). Unfortunately, this limiting

*
distribution is not very useful in practice since y is not typicallly

known.

A second related limiting distribution which might be of interest is

that of yj given g when both m and n tend to infinity. For equal sample size n,

integrating the joint p.d.f. b(y, s, or, (11,) (equation (1.1)) w.r.t. each yl

(i # j) and then w.r.t. or, we obtain the joint posterior p.d.f. of yj and

41, given g:
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b(y
j r w

le) = exp(-1/2v
71

g
j
)
2
) f ( +r$ y

j
) f

2
(4)

r
) f

3
(4)

r
)

where

11 v
fi(Sr$ Yj) (Sr

v -

exP(-11

m
M (Sr + ;0

-1

(Yi g')2/

and

f
2

(4)

r
),. (+r + v)

m - 2

2 exp(-114r + v)-1 g'* )

2,
,

ij

-11(v 2)exp(-1/24;1) .f
34 b {fir)br) =

.

th

r

16

(4.2)

(Mote: g. - 1)
-1

1.Z

gi and b(41.) is the prior p.d.f. of 41.).

0j

As n 4" 0, the contribution of v(+ 0) and m-iv(+ 0) to fi and f2

in (4.2), relative to that of .1)1, will become negligible. It follows that

fl4r$ Yj)f200f3(Sr) may be approximated by

-1/4(v + m+ 1) -1 * 2 m - 1 * 2fr exp(-
ii30r

(X + E

j

(gi 13.) + (yi )1

so that

as

to

n +

f 4 7 )'f 4 )4 4 )4.oirj 2r3rr

(X
gi.)2 m - 1 0*121-12(v + m - 1)

m lj o./

. Thus, b(yilg) = Io b(yi, yg)dfr is approximately proportional

,2x g*)2 in - 1 *,21-4(v + in - 1)
gi" ai .Yj g.

iij

(4.3)

when n

If we further let m 0, the second factor of the expression (4.3),

being the kernel of an unstandardized t density, approaches a normal density
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with mean g. and variance 6 im (X + E (gi - g.* )
2
)/(v + m - 4). The

i0j

expression (4.3) is parallel to the r.h.s. of (4.1) with yi(i # j) and

Y. replaced by gi 0 j) and g. . On the same ground discussed in

. 1 *
connection with btYj .fY g, m (0, it is then obvious that, when m, n

the posterior marginal distribution of y given g is normal with

mean )...(y I n c.)w 4 + v *)(6 + v)-1 and variance6, m, fig 8.

Var(Y 1g, m, n 44) ,m 617(6 + v)-1 . This simple form of the limiting

distribution for b(ylg) suggests exploring the possibility of a

normal approximation to the exact posterior marginal distribution of

(see section 5).Yj

In passing, we note that another attempt to approximate b(y
i
Ig) by substi-

tuting the kernel of inverse chi-square densities andand e2(fr) of sr,

having modes same as the modes of sr in fl and f2, for fl(¢r, Yj) and f2or)

in (4.2) was also made. In this case,

and

-*.. . -1/2 -1[Im _!.2

litsrl or
exp

or (Yj )

m - 2
2 fr-1/ g!)2

i0j

Thus, we have

to Efi(or)f2(Y1"3(Y1 d+r

v + m - 1
2 , m - 1 *,2 v I 2(x + (E (gi g.) ... kin .- 2)vj + - (Y - g.) - 711m J

ittJ
(4.4)

The result of replacing fl and fl for fl and f2 in b(yi18) is then

1)*(Y 18) exp (-W-1(Y )21

-1/2(v + m - 1)

.(X + (g4 g!)2 (m 2)v] + m (Yj - g!)2

1.0j (4.5)
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Examining (4.5), we find that b
*
(y

i
Ig) is of the same form of b(Y 1Y*, g)
- i -

in (4.1) except an extra term and that E (Y
i

li)2 is replaced by the
m

i #]* 2 * i

quantity E (g - g.) - (m - 2)v . Again, as m, n 4- co, b (lf 1g) approaches

i #j' i

a normal density.

The approximation of b(y 1g)
i -

2

of those by b(y
i
ly
*

, g). This is

proposed estimates of E(g, - g.)
2

i 1

(in the present context, E (Yi
i #j

*
and y. by g'') and ignore the term

by b
*
(Y

i
Ig) is in effect a special case

so because if we adopt Jackson's (1972)

- (m - 1)v for E(Y:
i t

2
y.* ) is estimated by

v/m (which should be

Y.)2 and g. for Y.

E (gi - g!)2 - (m - 2)v
iij

negligible even for

1 *
moderate m and n), we can treat b

*

.3

(y.1g) as derived from b(Y
i
1Y

'
g).

Though seemingly appealing, this effort to obtain an approximation for

b(ylg) also fails. However, it is a comfort to learn that a normal

approximation to b(y1g) has been found satisfactory. This approximation

is discussed in the next section.
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5. A Normal Approximation to the Posterior Marginal Distribution of Gamma

Searching for an approximation to the posterior marginal distribution

of y we carefully studied the shape of its exaet form. The index of

skewness shows that it is only slightly skewed and that the skewness can

therefore be ignored. In general, the marginal distribution of given

g is positively skewed if the observed gj is greater than g., and negatively

skewed if gj < g. . The exact ordinates b(y
J

of its density curve at

those points within the range of » 2 standard deviations (c j) from its mean

(up in steps of .5 of were evaluated by numerical integrations. The

results invariably indicate a pattern of unimodality. The density is

higher in the central region around the mean and decreases as moves

away from p . This suggests a good possibility of approximating this

density curve by a normal curve except perhaps in the tails. Also, we recall

that indeed it has a normal density as its limiting form. We, therefore,

compared these exact ordinates b(yj 18) with the corresponding ordinates of

a normal curve whose mean and standard deviation coincide with and of of

the exact distribution for Yj given g . These comparisons did bear out our

conjecture that the normal approximation is a promising approach.

As an example, a data set which was the result of a test of 12

items administered to 35 children was used. There were 3, 4, 5, 12, and

11 persons with 8, 9, 10, 11, and 12 correct answers, respectively.

Columns 2 and 3 of Table 1 contain the ordinates b(Y
J
18) of the exact

distribution of Yjig for the persons j having 10 correct answers, and

those of the corresponding normal curve. The points 1c = yj + coj, where c

takes the values from -2.5 to +2.5 in steps of .5, were included. We

remark that in making decisions, the relevant information is often

based on the cumulative probability rather than the density itself.

257



20

For this reason, columns 4 and 5 present the exact cumulative probabilities

Prob(yj
cY

and the corresponding normal approximations. It is seen

that the discrepancies between the exact and approximate figures are less

than .01. In most practical applications, this accuracy should prove to

be entirely satisfactory.

The currently available program MARPRO provides the exact probability

Prob(x > w Ig) = Prob(y. > y Ig) as well as its normal approximation.
0 -

This normal approximation has been found to be very adequate. The differences

are, in fact, less than .005 in nearly all cases. More numerical illustrations

are given in the next section.

Frequently, one is interested in finding the 100a percentage points

for gamma. They are difficult to evaluate directly from the exact

distribution of y Ig . However, one could find the approximate 100a

percentage point y
aj

for y using the unit normal curve, since the normal

approximation is usually expected to be sufficiently accurate. For this

purpose, we now derive an expression for a
2

= Var(y Ig) in terms of

P
*

Igii and
Pr' s

Sr

r v

4)1-.

1)a
*2

= Var ( T7777 i)

r '

First, we find

Var §)]

sr

Org + vg.
= Var (J--

v
sr

Sr
= Var [g. +

(gj
g)]

Sr
(pr v
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= (gj - g.)2(Var (
0

#+

v
---=-- 101

0
r

r

(11 - g.)
2

0
*2

.i

Applying equations (2.5), (2.6), and (5.1), we then have

o
2

= Var(LJ Ig) = v
Fl(m - lip* 11 2 *2

+ (gj - g.) ai M

(5.2)

(5.3)

The advantage of using the formula (5.3) is that in order to find the approxi-

mate 100a percentage points of Yj for all groups, we need only to compute

*
p and a

*2
. Given b(0 g) in equation (2.2), P

*
and a

*2
are easy to compute

r -

by numerical integrations, for known m, n, A, v, and E(gi - g.)
2

.

i

Now, if one has p
*
and a

*2
available, the 100a percentage point y

aj
for

yik can be obtained with the help of a standard normal table. Thus, let

prob(z < z
a
) = a ,

where z is a standard normal variate, one finds

such that

1 + (m - 1)0* 2 *il 1/2 *
lei za[ (4n + 2)m + (gj

g.) G I + P
(gj

g.) + g.

prob(Y
i

< Y
ui

18) 6 4

The sine- squared transformation of ya3 can then be taken as the approximate 1000

percentage point for w
i '

viz., n
aj

= sin
2
y
aj

for which prob(n
i

< w 1g) = a

Similarly, knowing p* and 0*2, one could evaluate the approximate probability

of Yj Ly0 given r$ from the normal table:

V-,
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where

Prob(? < yolg) * Prob(z < so)

Z =
Yo P*(gi- g.) - 8.

[1 + (m 1)P* 020*2.1
(4n + 2)m

1/2

Before leaving this discussion, we note that one can write

where

*2 *2 *2
= - p

w*2 fr \21

4r pr + v ) 1 t41

22

(5.4)

(5.5)

In tabulating constants for the normal approximation, it turns out (Wang, 1973)

to be more convenient to tabulate P
*2

and w
*2

than p
*2

and o
*2

as a function

of the prior and sample estimates of . (X /v and E(g - g.)
2
fm, respectively)

i

given fixed values for m and n . This is so because a
*2

is not monotone in

*
the arguments but w

2
is monotone.
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6. Numerical Examples
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In addition to performing all the computations outlined in sections 2

and 5, the Fortran program MARPRO also provides the joint modal estimates ii

for the gammas. The estimates irj and 71j of the proportions nj based on

ij and the marginal mean estimates 1j, respectively, are both available from

MARPRO for comparisons. Hence, the program MARPRO is recommended for analyzing

m-group binomial data with equal n . This program uses the Freeman-Tukey (1950)

transformations for binomial data; i.e.,

g _(sin-1 /11.7.1
n + 1 ---

4-7.71
V 717.1 ) (6.1)

where x is the observed number of successes. In accord with this transformation

(6.1), the proportions n can be estimated by:

1 -
i. (1 + ) sin

2
y
j

-
n2n

(6.2)

(SeeNovia,Lods,andJackson,1973).Noiethatfl.is also obtained

from Yj by equation (6.2).

With the help of this program, we were able to reanalyze the data

prevented in Table VI of Novick, Lewis, and Jackson (1973). These data

were collected for the estimation of item difficulties for six social studies

items. For a comparable analysis, we chose to set v is 8 and t 6 (which

.
is equivalent to let A

v 2

4(t + 1)
214 in the current program). In Table 2,

estimates of these item difficulties nj based on y and ; were presented.

For the joint modal estimates, both the present results (labeled FT) and

those of the previous analysis (labeled B, following the cited source) were

given. Notice that for some groups slight discrepancies between these two

values were found due to ii:ferent transformations employed [in Novick,

Lewis, and Jackson, Anscombe's (1948) transformations were taken]. Both

Co(m .8856) and p*(= .8906) are quite big because of the fairly large sample
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sizes (n gg 57) for these data. Accordingly, no substantial regressions of

individual vj estimates towards a common value (v. corresponding to y.) were

expected. Similarly, for this large n, the marginal mean estimates do not

differ significantly from the joint mode/ estimates.

In the present analysis, the probability that the item difficulty vj is

greater than some specified value v
o
was computed from the marginal distribution

of yj . The exact (posterior) probabilities and their normal approximations

(given in parenthesis), for vo .95(-.05).50, are presented in Table 3.

The normal approximations were excellent in this case. Thus, having the

marginal distributions available, we can now make explicit probability

statements about the item difficulties of these six items. For example, one

finds the probability that the item difficulty of item 1 is greater than .85

is .9616. These statements should prove to be useful in selecting items for

a test. It is interesting to note that the posterior distribution for item

one assigns a probability of ma. .18 to the event v
1
> .95, even though the

observed proportion was .9474. On the other hand, the probability that

v
1

< .90 is .28. Thus, we see that the posterior distribution of v
1
is highly

asymmetric, (note that posterior marginal mean estimate of al is .925' in

contrast to the posterior distribution of yi which is quite symmetric.

For reference, the descriptive statistics (mean, standard deviation, and

index of skewness) for the marginal distributions of gamma are also

provided in the same table. We noted earlier that a uniform distribution

on pr had been assumed in the derivation when in fact pr is restricted to

the range zero to v/v . To demonstrate that this does not materially

affect the analysis we numerically computed, the aposteriori probability

that pr lie in the range 0 to 2v for each of the data sets presented here.

In each instance that probability was unity with an accuracy of 10
-5

.

The point, of course, is that provided m is moderate the prior distribution

on P will, have little effect on the results of the analysis.
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To illustrate the differences between the marginal mean and the joint

modal estimates when the sample size n is smaller, our second example involves

some artificial data sets. Binomial data of m groups were randomly generated

from a normal distribution of gamma with mean pr = sin
-1

ITland variance fr .

x

First, m values of gj were generated by randomly sampling from the

specified normal distribution. These g, were mapped into p by sine-squared

transformations (p, = sin
2
g). Then the nearest integers of np were taken

asthecbservednumberasuccessesxito be analyzed by MARPRO. All the

analyses reported hereafter adopt v = 8 and A = .25 (which is equivalent to

a value of t = 5) for the prior inverse chi-square density of fr .

We have thus generated nine sets (for m = 10(5)50 and n = 8) of data.

The values pr = 1.1731, which matches an average of the proportions pir = .85,

and f = .029 which happens to be (4n + 2)
-1

for n = 8, were used. Each data

set was processed by MARPRO. The results demonstrate consistent patterns

for all data sets and with only minor differences for the different values

of m . We, therefore, chose to report only the results for m = 10, 20,

30, 40, and 50.

In Table 4, the estimates aj, based on the marginal mean estimates Y3
4

.

andi,(giveninparenthesis)basedonthejointmodalestimatesyivmre

presented. Since there were many, groups having the same observed number

of successes xj and thus, sharing the same estimates of we we present

these estimates and fri for different values of x instead of for

each group. The analyses of these generated data invariably result in

significantly bigger values for P than p, so that the general conclusion

(3.3) follows. It is also seen that there are sub3tantial differences

between and ;, .
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As the number of groups (m) increases (for fixed n), both p and p decrease.

'this means that the estimates of yj .re more regressed when more groups are

used. However, one should bear in mind that sampling fluctuations in these

generated data result in small variances in this trend. It was also found

that the decreasing rate of p as m increases is not as high as that of p .

This confirms the expectation that the joint modal estimates are subject to

more influences from other groups. On the other hand, the marginal mean

estimates, associated with a squared-error loss for each group separately,

place more emphasis on the individual observations. Thus, they are less

affected by the inclusion of more groups.

For the marginal probabilities Prob(si > tolg), we arbitrarily selected

those for groups with the number of successes xj = 5 and 7 to be reported in

Tables 5 and 6. The values of no from .70 to .95 by steps, of .05 were

included in the tables. The normal approximations are again sufficiently

precise. The trend of increases in the probabilities as m increases is

consistent with the results in Table 4. Since the marginal distributions

are relatively stable w.r.t. the size of m, we suggest that the observed

differences are largely due to sampling fluctuations in our generated data.

In passing, we note that other data sets generated in the same way

described earlier for n el 6 and vtrious sizes of m have also been analyzed.

The results reveal the same patterns found in the above example.

Our last example used the result of a 12-item test administered to

35 children. The outcome was that 11 persons scored perfectly, 12 persons

missed only one item, and 3, 4, and 5 persons gave correct answers to 8, 9,

and 10 items, respectively. The estimates i and s and the posterior

marginal probabilities prob(a > n ,I g) were presented in Table 7. Again,

eonaiderable differences between Wj and nj were recorded. The posterior
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probabilities enable us to reach a more specific judgment on the individual's

performance. For example, a person j having 8 correct answers (pj = .6667)

in the test is considered to have an ability greater than .55 with high

certainty (probOrj > .5510 = .9912].

The analysis in Table 7 demonstrates the force of the Bayesian m-group

method. Consider a class performance as indicated in the data for Table 7

and a situation in which a mastery level of /0 = .85 seemed appropriate.

We note that a person answering 10 items correctly has a pj "score" of

.833, and hence, has failed the /0 criterion value of .85. As a result,

we would not pass the person. The Bayesian analysis, however, yields a

different picture. First, the point estimates of his / are .8829 and .8657

relative to joint zero-one loss and either joint or component squared-error

loss, respectively. Thus, on an informal basis, we would probably decide

to pass the person. Secondly, the probability that his score is at least

.85 is .5082. Therefore, with roughly equal losses associated with false

positives and false negatives it would essentially be a toss-up as to whether

he was passed or not.

In passing, we also note that for a person j with 11 correct answers,

the joint estimate ; is identical to the marginal estimate nj (= .9036).

This is so because, for this person, his observed g score (gj = 1.2288) is

equal to the average g score over all persons (g. = 1.2287). It is also

clear that, from equation (2.9), the posterior marginal distribution of the

corresponding y4 is symmetric (i.e., the coefficient of skewness 6j = 0).

Finally, posterior conditional means and standard deviations of yj

given the marginal mode fr of # hi were computed for the data of the six

social studies items and some of the randomly generated data sets (see Table

8). These conditional. mean estimates of were compared with their marginal
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mean estimates to provide some idea about how large the values of m and n

would warrant the use of conditional estimates [which are of much simpler

form as indicated by equation (2.1)] as approximations to the posterior

estimates of yj . It appears that for m == 50 and n m 30, the conditional

mean estimates L(y I;
r,

, g) and standard deviations 0(Yil;r18) are reasonably

close to their marginal statistics e(yil) and 0(y )4). Note that

referring to equation (2.2), the marginal mode ;r of #r given g can be

obtained by solving the following cubic equation for ;r:

22
Oa + v + 1) 41,

3
+ ((11 + 2v + 3)v - E(g g.)

2
- A) fr

i

+ + 2)v2 2Xv] +r Xv2 = 0 (6.3)
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7. Summary and Conclusions

The knowledge of the posterior marginal distributions of

gammas should aid in making our decision when it is concerned about

individual persons. There is little doubt that the normal approximations

to these marginal distributions are very successful, judging from

comparisons with the exact probabilities obtained by integrations. Thus,

we recall from section 5 that once p
*

= (- g) and 0e2 =
fr"

Var ( g) are computed by integrations, the interesting descriptive
Tr

r

4
I'

statistics (mean, standard deviation) for yj given g are readily available.

Moreover, given p
*

and 0
e2

, the relevant probabilities for making

yj given g can be

satisfactorily approximated using a standard normal table.
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Table 1: An Example of the Posterior Densities and Cumulative

Probabilities for yj given g

c
Posterior Density Cumulative Probability

Exact Normal Approximation Exact Normal Approximation

-2.5 .1834 .1736 .0071 .0062

-2.0 .5346 .5346 .0239 .0228

-1.5 1.2577 1.2825 .0674 .0668

-1.0 2.3558 2.3961 .1575 .1587

- .5 3.4708 3.4863 .3058 .3085

0.0 3.9806 3.9505 .4976 .5000

.5 3.5292 3.4863 .6911 .6915

1.0 2.4118 2.3961 .8426 .8413

1.5 1.2726 1.2825 .9345 .9332

2.0 .5215 .5346 .9779 .9772

2.5 .1676 .1736 .9939 .9938

The prior d

square with d.f.

12 observations

and 12 successes

corresponding to

35 persons is g.

is p = .2757 and

*
p = .4920. The

given g are: u3

6 * coefficient

istribution of tpir in this analysis is an inverse chi-

v = 8 and parameter X = .25. There are 35 persons,

in each. The number of persons having 8, 9, 10, 11,

are, respectively, 3, 4, 5, 12, and 13.. The value gj

10 successes is gj = 1.1187 and the mean of g
i

over

= 1,2287. The weight for the modal estimates of /

the weight for the marginal mean estimates is

descriptive statistics of the distribution for 'y3

* bYilf) * 1.1746, aj = (Var(Yi 18)11/2 = .1010 and

of skewness = -.0035.

268



31

Table 2: An Analysis of Item Difficulties for Six Social Studies Items

Item
Number

n P i 1

i

Joint Est.(i
i
)

PT B

Marginal Est.

*
i

,-

1 57 .947 .924 .922 .925

2 57 .386 .423 .423 .421

3 57 .526 .546 .546 .546

4 57 .842 .825 .823 .825

5 57 .772 .762 .761 .762

6 57 .614 .623 .622 .623

Prior distribution of Or: v 8, t = 6 (equivalently, A = .214);

p = .8856 and p* im .8906.
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Table 3; Posterior Probabilities prob(m
j

> m
o
Is) for the

Six Social Studies Items

Items

n
o

prob(m > m
o
Ig)

1 2 3 4 5 6

.95

.90

.85

.80

.75

.70

.65

.60

.55

.50

.18021802
(.1803)

.7193.

(.7200)

.9616

(.9611)

.9975

(.9974)

.9999
(.9999)

1.0
(1.0)

----

----

____

----

-_- _.

----

0.

(0.)

.0001
(.0002)

.0024

(.0026)

.0220
(.0225)

.1101

(.1104)

mm. ..

__--

0.

(0.)

.0003
(.0003)

.0054

(.0056)

.0448

(.0452)

.1903

(.1902)

.4700
(.4692)

.7629
(.7626)

.0005

(.0005)

.0372

(.0369)

.2784

(.2789)

.6757

(.6762)

.9203
(.9201)

.9893
(.9890)

.9992
(.9991)

1.0
(1.0)

--..._

----

0,

(0.)

.0013
(.0012)

.0347

(.0346)

.2205

(.2207)

.5722

(.5725)

.8585
(.8584)

.9728
(.9727)

.9970

(.9970)

.9998

(.9998)

.9999

(.9999)

_-_-.

__--

0,

(0.)

.0008
(.0008)

.0135

(.0136)

.0937
(.0939)

.3198
(.3196)

.6379

(.6375)

.8760

(.8760)

.9743
(.9745)

.9250 .4211 .5455 .8254 .7622 .6227

p3

g3

Uy
J
Ig)

a(y Ig)

S.
3

.9474

1.3232

1.2865

.0643

.0011

*

.3860

.6724

.7069

.0641

-.0010

k

.5263

.8112

.8306

.0633

-.0007

.8421

1.1543

1.1360

.0632

.0007

.7719

1.0674

1.0587

.0629

.0004

.6140

.8984

.9083

.0630

-.0004

The exact probabilities were obtained by
.

corresponding normal approximations were

probabilities less than .0001 and greater

and l, respectively, p
J

is the observed sampled

index of skewness of the conditional distribution

set a data, g. ili .9878 and F(gi - g.)2
i

numerical integrations. Their

given in parentheses. Those

than .9999 were regarded as 0

proportion and 6
i
Ls Ow

of y Ig . For this:
i -

.2852.



Table 4: Analyses of Data Sets Randomly Generated

estimates of I
i

33

10 20 30 40 50

3

( = .375)

---

----

.632

(.713)

----

----

-___ .672

(.776)

4 ---- .685 ---- .718 .715

( * .500) (.743) ---- (.7$5) (.791)

5 .720 .735 .735 .759 .756

( = .625) (.740) (.772) (.772) (.802) (.805)

6 .772 .786 .781 .800 .798

( = .750) (.779) (.802) (.794) (.819) (.820)

.828 .841 .829 .844 .843

( .875) (.821) (.835) (.819) (.839) (.837)

8 .913 .923 .905 .913 .913

( 1.000) (.889) (.888) (.861) (.871) (.865)

p .4620 .4603 .4068 .3789 .3853

p (.3518) (.2792) (.2079) (.1679) (.1446)

g. 1.0853 1.1146 1.0950 1.1260 1.1238

E(gi - g.)
2

i

.1723 .7388 .8257 1.0257 1.5945

These data were randomly generated from a normal distribution for y with

mean y
r

= 1.1731 (p = .85) and f
r
= .029. The number of observations in

each group is n = 8. The present analyses adopt v = 8, t = 5

(equivalently X = .25) for the prior inverse chi-square density of (I), .

Marginal estimates Wj and joint estimateili (given in parentheses)

are presented here. Blank entries indicate there are no values

of the corresponding x being sampled. p
i

= x
J
/n is the observed

sample proportion of group j . Note that p50 (.3853) for m = 50 is

larger than p:0 (.3789) for m = 40 due to sampling fluctuations. The

generated data for m = 50 has a bigger mean squared deviations of

g Mg
i
- g.) /m) than that of the,W4 for m =

i
to .02564).

G 1 1
40 (p03189 as compared
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Table 5: Posterior Marginal Distributions of yj for Groups with

5 Successes in 8 Trials for the Five Generated Data Sets

prob(v > 1
o

I

10 20 30 40 50

.95
.0024 .0028 .0016 .0022 .0021

(.0027) (.0032) (.0017) (.0025) (.0024)

.90
.0207 .0248 .0179 .0254 .0244

(.0222) (.0268) (.0192) (.0273) (.0261)

.85
.0783 .0933 .0783 .1077 .1037

(.0809) (.0961) (.0809) (.1102) (.1062)

.80
.1912 .2233 .2063 .2683 .2604

(.1923) (.2236) (.2072) (.2677) (.2600)

.75
.3514 .3991 .3906 .4773 .4667

(.3590) (.3952) (.3876) (.4725) (.4623)

.70
.5299 .5839 .5886 .6773 .6672

(.5248) (.5778) (.5832) (.6720) (.6621)

4
i

.720 .735 .735 .759 .756

e(Yjlf) .9989 1.0149 1.0149 1.0397 1.0369

a(YjI§) .1245 .1213 .1130 .1089 .1093

6
J

-.0091 -.0099

.

-.0080 -.0083 -.0079

.

For these groups, p
i

= .625 and g
i
= .8982. The exact probabilities

rob(irj > wolf) and the corresponding normal approximations (in

parentheses) are presented.
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Table 6: Posterior Marginal Distributions of for r Groups

with 7 Successes in the Five Generated Data Sets

prob(lri > 1014)

m

0
10 20 30 40 50

.95
.0335

(.0325)

.0390

(.0384)

.0230

(.0220)

.0273 .0271

(.0267) (.0265)

.90
.1421

(.1435)

.1652

(.1671)

.1228

(.1241)

.1477 .1463

(.1494) (.1479)

.85
.3238

(.3268)

.3678

(.3701)

.3137

(.3165)

.3673 .3638

(.3693) (.3658)

.80
.5327

(.5342)

.5866

(.5867)

.5432

(.5441)

.6102 .6056

(.6096) (.6051)

1

.7171

(.7163)

.7658 .7421 .8000 .7959

(.7641) (.7407) (.7981) (.7941)

.70
.8493

(.8476)

.6841

(.8825)

.8758

(.8740)

.9135

(.9123)

.9109

(.9097)

.828 .841 .829 .844 .843

t(ii If) 1.1177 1.1334 1.1196 1.1371 1.1360

a(1 19)
i -

.1234 .1198 .1121 .1077 .1082

6
j

.0034 .0019 .0025 .0011 .0011

For these groups, pi = .875 and gj = 1.1554.
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Table 7: Analyses of a Data Set Obtained from a 12-item Test Given

to 35 Children

x.3 =8

pi = .6667

gi = .9423

x.3 =9

pi = .7500

gi = 1.0262

x
j
= 10

pi = .8333

gi 1.1187 jgj

x.=11
3

pi = .9167

= 1.2288

i
= 12

pi = 1.0000

gi = 1.4303

s
o

prob(si > solp

.95 .0052(.0062) .0156(.0168) .0444(.0455) .1224(.1234) .4275(.4321)

.90 .0557(.0585) .1174(.1192) .2298(.2304) .4193(.4199) .7808(.7807)

.85 .2035(.2035) .3348(.3327) .5082(.5058) .7110(.7097) .9379(.9359)

.80 .4304(.4253) .5898(.5853) .7502(.7478) .8873(.8864) .9861(.9850)

.75 .6588(.6534) .7917(.7894) .8966(.8964) .9642(.9643) .9974(.9971)

.70 .8276(.8262) .9115(.9123) .9642(.9653) .9905(.990S) -- ( -- )

.65 .9258(.9276) .9680(.9699) .9895(.9905) -- ( -- ) -- ( -- )

.60 .9725(.9750) .9901(.9915) .9973(.9979) -- ( -- ) -- ( -- )

I_

r .55 .9912(.9929) -- ( -- ) -- ( -- ) -- ( -- ), -- ( -- )

Estimates of Proportions and Descriptive Statistics

!j 1
(.846 (.8644) (.8829) (.036) (.9376)

. lii

.7961 .8305 .8657 .9036 .9606

e..(y 1g)
i -

1.0878 1.1291 1.1746 1.2287 1.3279

u(Y
i
IS) .1029 .1018 .1010 .1007 .1018

6
i

-.0089 -.0064 -.0035 .0000 .0063

Fur these data, g. = 1.2287, E(gi - g.)
2
= .9175. Prior distribution of

i
*

4,

r
: v = 8, t = 5 (equivalently, X = .25). p = .2757 and p = .4920. The

figures in parentheses are normal approximations to prob(si > nolg). Those

cumulative probabilities greater than .999 were omitted in the table.

x
i

= 8 prob(.8861 < y
i

< 1.2895) = .95 or prob(.6000 < n
i

< .9229) = .95

x
i
. 9 prob(.9296 < y < 1.3286) = .95 or prob(.6422 < s

i
< .9425) = .95

x
i
. 10 prob(.9766 < y

J
< 1.3726) = .95 or prob(.6866 < s

i
< .9612) = .95

x
i

. 11 prob(1.0313 < y < 1.4261) = .95 or prob(.7361 < tr
i

< .9792) = .95

x
i

. 12 prob(1.1284 < y
i

< 1.5274) = .95 or prob(.8167 < n
i

< .9981) = .95
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Table 8: Conditional Distributions of y Given the

Marginal Mode ;r of Sri§

I. The Six Social Studies items On = 6, n = 57)

ir = .03004

Pi

wi
s 1;
j r

t(Yil8)

ed(Yjlir 0

0(Y IS)
i -

a(Yjlii" 0*

.9474

.9250

4.9219)

1.2865

(1.2808)

.0643

(.0624)

.3860

.4211

(.4265)

.7069

(.7122)

.0641

(.0624)

.5263

.5455

(.5486)

.8306

(.8336)

.0633

(.0624)

.8421

.9254

(.8233)

1.1360

(1.1332)

.002

(.0624)

.7719

.7622

(.7610)

1.0857

(1.0574)

.0629

(.0624)

.6140

.6227

(.6242)

.9083

(.9097)

.0630

(.0624)

II. Randomly Generated Data On = 50, n = 8)

;r = .01652

.

.$

i

j
it

E(Yj IP

6("Y I; g)
j r,

a(Y410J..

a(Yil;r1 )*

3750

.6717

(.6833)

.9499

(.9615)

.1125

(.1047)

.5000

.7147

(.7231)

.9934

(1.0021)

.1106

(.1047)

.6250

.7561

(.7614)

1.0369

(1.0427)

.1093

(.1047)

.7500

.7977

(.8002)

1.0829

(1.0856)

.1084

(.1047)

.8750

.8427

(.8421)

1.1360

(1.1352)

.1082

(.1047)

1.000

.9129

(.9081)

1.2306

(1.2234)

.1098

(.1047)
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III. Randomly Generated Data (m = 50, n = 30)

* .00924

P
J

J

;
j
II

r

(Y I8)
J

0(y
j
I;

rtL
a(y jg)

J -

0(Y
J rt
I; 8

-

.6687

.7535

(.7564)

1.0464

(1.0498)

.0685

(.0665)

.7667

.8031

(.8045)

1.1048

(1.1065)

.0677

(.0665)

.8000

.8200

(.8209)

1.1259

(1.1270)

.0675

(.0665)

.8333

.8374

(.8377)

1.1483

(1.1487)

.0675

(.0665)

.8667

.8552

(.8550)

1.1723

(1.1720)

.0674

(.0665)

.9000

.8740

(.8733)

1.1987

(1.1977)

.0675

(.0665)

.9333

.8941

(.8928)

1.2289

(1.2270)

.0678

(.0663)

.9667

.9167

(.9150)

1.2660

(1.2630)

.0683

(.0665

Data sets I and II were used in Tables 2 and 4, respectively. Data set

III was generated specifically for this table. The sample statistics for

Data set III are g. 1.1625 and E(gi g.)
2
- .2927.

*The conditional standard deviations of given fr and g are same for all

groups.
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Before concluding our discussion of the estimation of proportions in

m groups, we shall briefly consider the effect of assuming a proper prior

distribution for o
r'

in place of the uniform distribution used up until

now. The form of the prior is specified, if we restrict ourselves to

natural conjugate densitiei, by

b(PrI$r) m q1/2 exo(-1/2 k ci(Or 11)

2
] (1)

where h is the prior mean for or and k the "prior sample size" associated

with our knowledge of or . Combining Equation (1) with b(ykr, ,r) and

b(4r), we obtain

3)-
b(y, Or, (Pr) ' fr

(v m +
exp(-4.

r

1 WY )
2
+ k(ur h)

2
A)) .- U

r

(2)

*This note is a Technical Supplement to ACT Technical Bulletin No. 13.

The material contained here should be considered as inserted prior to the
concluding section of that Bulletin.
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Now, with some rearranging of terms, we may write

r

1
(E(y p

r
)
2
+ k(p - h)

2
+ X]

2
+ my.

- (k + m 0 1(p
r r

kh
k + m

1
+ y.)2 +

km 2)
fr [X t(Yi Y.)

Thus, if we integrate Equation (2) w.r.t. we we obtain

-11(v + m + 2) -1 2 kmb(y, y (1)/, expi-1/241, + t(yi - 1.) + (h Y.)21)

Further integration, this time w.r.t. r, yields

b(y) = (X + E(yi - y.)2 + (h y.)
2

)

-14(v + m)

(v + - hp'A(/ - hi))
-11(v + m)

(3)

where 1 is the vector of order m all of whose elements are unity and A is

+m-lv
themxmmatrix with diagonal elements (

k
)),and off-diagonal

-
elements ( ri-170 ) r . In other words, we have shown that the unconditional

prior distribution for 7 is multivariate t, with v degrees of freedom,

mean hl, and covariance matrix ( 777)6
-1

. In particular, this implies

that the marginal prior density of any yi is univariate t, with v degrees

X
of freedom, mean h, and variance (

k + 1
) , provided k is greater

than zero. We note that if k = 0, the joint density b(y) in Equation (3)
11'

becomes improper because the inverse of A = I - does not exist.
ta

Novick, Lewis, and Jackson (1973) discuss the possibility of interrogating

an investigator about his prior beliefs concerning nit where i hag been

arbitrarily selected. One of their suggestions is to approximate these
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beliefs with a beta density. If we interpret the parameter., of the density

so obtained as the numbers of "prior successes" and "prior failures",

respectively, then the sum of the parameters gives the "pri^r sample size",

t, and the mean of the distribution is the "prior proportion of successes",

M.. From these two values, Novick, Lewis, and Jackson (1973) obtain approximate

/
expressions for the mean and variance of y

i
= sin

-1
YA

J.'
namely

and

t.,-(yi) 4 sin-14T

Vary)i, 4(t + 1)

If we now equate these values to the mean and variance for Y4 found above,

we have expressions for h and for A

and

h = sin-14T

k(v - 2)
-

4(k + 1)(t + 1)

(4)

(5)

Novick, Lewis, and Jackson (1973) have argued that v = 8 will, in many

cases, be a reasonable specification of the prior degrees of freedom for

4r . If we accept this value, then our only remaining task is to specify k,

the "prior sample size" for pr . It is tempting, and may in some cases be

reasonable, to assume that our prior knowledge of up and of come from

essentially the sal. s sources and so could be associated with a single

hypothetical prior sample. This would allow us to equate k - l and v,

giving a value of k = 9 in the present circumstances. In many cases,

however, when we have selected our groups (or individuals) to be quite

similar, our knowledge concerning may be greater than our knowledge of
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lir . This would suggest taking k < v + 1. Working with an improper prior

for u
r

represents, in effect, the extreme situation where k = O. If we

were to work with k = 5, for instance, Equation (5) would reduce Co

5
X -

4(t + 1) '

which may often be a reasonable assignment.

Once values have been supplied for h, k, A, and v, we can work

directly with the posterior distribution for y, which is proportional to

the product of the likelihood Z(Ilg) and the prior density of y, given

in Equation (3):

- , km

m
,b(ylg) 0: expf-kEv

1

1
(g
i
- Y

i
)

2
]

. (A + E(Yi - Y.)
2

k kil Y.)
2

1

-4(
v+ra

)

+

(6)

If we take derivatives with respect to each yi and set the results equal

to zero, we obtair the following equations for the joint posterior mode

of y:

where

and

- _
irgi + viiir

vj ,

i + v.
r 3

Mr

kh + ml.
"r k + m '

1

...,

4r - [A + E(ii i.)2 + ki.-÷re (i - h)21/(v +.0 .

(7)

These equations are closely related to Equation (3.1), Section 3, or the

main text; the solution obtained with an improper prior for pr . Indeed,

if h = y. or if k = 0, the two results are identical except for a difference

of unity in the denominator of it . At a practical level, making use of our
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prior knowledge about pr increases the effective number of groups in the

study; this will be particularly important in cases where m is relatively

small (say, between 5 and 15). On the other hand, for larger m or in cases

where the prior specification closely agrees wit's the sample results, there

will be little to choose between proper and improper priors for pr .
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TABLES OF CONSTANTS FOR THE POSTERIOR MARGINAL

ESTIMATES OF PROPORTIONS IN m GROUPS

by
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1. 4..;eneral Descriptions

For estimation of proportions in m groups, Novick, Lewis, and Jackson

(1973) have developed a Bayesian Model II solution which provides posterior

jointirodalestimates"fdletransformedproPortions1.=sin
-1

Yr
/-

. The

values i (j = 1, ..., m), the sine-squared transformations of if .suitably

corrected by a factor depending on sample sizes nj, were then taken as the

. These joint

estimates are useful in making joint decisions for m grows.

To aid in making separate decisions on individual groups, the posterior

marginal distributions of Yj, for the case of equal sample sizes n, have

been studied recently by Lewis, Wang, and Novick (1973). They

workedoutthep"teriormarginalgreatlestirAtesu3.w-bY .10 of 1 to

be

u = p gj + (1 - p )g. , (1)

where p =

41.(
L

and v = (4n + 2)-1 . The posterior variances
'

or

v

a
2

of y were expressed as:

*

c3 = Var(y
i
Ig) = vP11-,:j11::1] + (g4 - g . )2 (11'2 , (2)

m

41. ,
where ct

*2
= Var

1 (
fr v

1

I -
4 + .

P

The research reported herein was performed purguant to Crant No.
0EG-0-72-0711 with the Office of Education, U.S. Department of Health,
Education, and Welfare, Melvin R. Novick, Principal Investigator.
Contractors undertaking such projects under Government sponsorship are
encouraged to express freely their professional judgment in the conduct
of the project. Points of view or opinions stated do not, therefore,
necessarily represent official Office of Education position or policy.
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Thus, if p and a
*2

have been computed, one could easily obtain the

posterior means and variances of y from formulas (1) and (2).

To compute p
*
and 0

*2
, one needs to know the posterior distribution

of sr . This was given by Lewis, Wang, and Novick (1973) as

m - 1

b(srlo % (sr + v) 2 exp(-110r v'-1 E(gi - g)
2

-( I+ 1)

exp(-1/2 (Is
-I

sr A) (3)

The values of p and 0
*2

can then be obtained by numerical integrations:

and

where

Cu

( rP* = ig(-sr sr + v -)

r(4r + v)-1 b(4r1§)dr

*2 *2 *2
a =w -p

*2 '
fo 41'

+20 v)-2 b(frig)d.r

Equations (3) - (6) imitate that P
*

and a*2 would vary for different

m, n, v, A and S
2
= E(g

i
g.)

2
. Consequently, a complete set of tables

of p
*

o
*2

for all practical values of these five parameters would require

a formidable volume. Since previous experiences and theoretical findings

have suggested that v = 8 was a satisfactory choice in most applications

for the prior distribution of $r (see Novick, Lewis, and Jackson, 1973), we are,

therefore, content with providing a subbet of the tables which set v = 8. The

values m = 10(5)30(10)80 and n = 8(2)30 are included in the tables

presented here. For each pair of (m, n), p
*
and c

*2
were computed for

different values of A/v and s
2
= S

2
/m (prior and sample estimates of sr):

8 8

Values of X/v, s
2
= .01(.01).05 are included in the tables. For other
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values of m, n, A/v and s
2
within their ranges selected in these tables,

corresponding p
*
and 0

*2
can be approximated by interpolation.

While 0
*2

is not monotone in A/v and s
2
, the posterior expectation

w
*2

of X2(0 + v)
-2

with respect to 0 is monotone. We therefore,

*
r

*2
tabulate p and w

*2 *
instead of p and 0 . Given a prior estimate A/v and

a sample estimate s
2

of sr, for which P
*
and w

*2
are not explicitly tabulated,

one can obtain P
*
and w

*2
by interpolation using the ,iven tables. The value

*2
then can be found by subtracting p from w

*2
(0
*2

= m
*2 *2

- pof o ).

It may be noted that these tables include the size of m and n only

up to 80 and 30, respectively. For values of m > 80 and n > 30, the posterior

conditional distribution of yj given ir [the posterior modal estimates

of fr obtained from its posterior density expressed by (3)] and g was found to

satisfactorily approximate the posterior marginal distribution of yj

given g . This posterior conditional distribution of yj given ir, g

was shown to be normal (see section 2, Lewis, Wang, and Novick, 1973) with

mean

and variance

7

e r !rgi vg.

var(yilir$
.10 1::

+ m

+ v1

v)
17%

(7)

(8)

Thus, for large m and n, this conditional distribution provides an

approximate basis for making decisions on individual groups. Having

made p
*
and 0

*2
available, the probabilities that a group proportion

wj is greater than some criterion uo given observed g (prob(uj flo10]

can be obtained applying the normal approximation to the posterior

distribution of y given 13 discussed in (Lewis, Wang, and Novick, t973).

That is,
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prob(wj >wolf) prob(y > yolf) * prob(z > zo) (9)

where y
o

ix sin
-1
if- ,

-41 1)p
*

.2 *2+ (g - g.) azo (y P (g gJ (4n + 2)m

(10)

Similarly, approximate 100a percentage points /00 of nj can be computed

with the help of a standard normal table. For example,

where

w
aj

* sin
2
y
aj

1 + (m - 1)p 2 *1 1/2

, (12)
Yaj Pj za [ (4n + 2)m + (gj g*)

and z is the 100a percentage point of a standard normal variate.
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2. Interpolations

In practical applications, one would not expect s
2
of his data to be

exactly equal to the tabulated values (s
2

= .01(.01).05). Likewise, an

investigator may have reason to choose his prior A/v other than values

included in these tables. In these cases, approximations of p
*

and w
*2

can be obtained by interpolation using available tabular points. For

illustrative purposes, we have computed p
*
and w

*2
for

2
= .0169, .0256,

.0361, and .0484 with m = 10, v = 8, 1/v = .01 and n = 8, 16 by numerical

integrations. These exact values of P
*
and w

*2
are then compared with

* *2
those (pI, wI ) obtained by simple linear interpolation. The table

presented below shows that the discrepancies between interpolated and

exact values are negligible.

Comparison Between Exact and Interpolated Values of p
*
and w

*2

(m = 10, v = 8, 1/v = .01)

s
2

n = 8 n = 16

.0169 .0256 .0361 .0484 .0169 .0236 .0361 .0484

nr'l"
0 (exact) .2538 .2654 .2812 .3029 .3960 .4285 .4730 .5300

*
P
I
(interpolated) (.2540)(.2656)(.2815)(.3031)(.3966)(.4291)(.4735)(.5301)

w
*2

(exact) .0718 .0787 .0886 .1030 .1674 .1957 .2373 .2953

w
I

2
(interpolated)(.0720)(.0789)(.0888)(.1031)(.1681)(.1966)(.2381)(.2955)

a
*2

= w
*2

- p
*2

.0072 .0083 .0095 .0113 .0106 .0121 .0136 .0144

*2
= w

*2
- p

*2

I I I
(.0075)(.0084)(.0096)(.0112)(.0108)(.0124)(.0139)(.0145)

1

It may be noted that in this example, the monotone functions of both 0*

and w
*2

on s
2
are slightly postively accelerated. Consequently, the values

obtained from linear interpolations consistently overestimate, though

negligibly, the exact values as demonstrated in the above table. However,

2 ti
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*2
the ehalictiterintic of the monotone functions of P

*
and w on s

2
varies

with the values of m, n, v and 11. . For example, given m = 10, v = 8,

A/v = .05, and n = 16, the functions of p
*

and w
*2

on s
2
become negatively

accelerated. Therefore, whether the interpolated value underestimates or

overestimates the exact one depends on other parametric values (e.g.,

m, n, v and A/v) being considered. In general, the discrepancies are

very small when linear interpolation over an interval length of .01 is

*
applied in our present problem. Apptoximations of p and to

*2
for

nontabulated values of m, n, and 1/v can also be obtaaded satisfactorily

by linear interpolations.
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3. A Numerical Example

To illustrate the use of these tables in actual data, the example

presented in Table 7 of Lewis, Wang, and Novick (1973) was reanalyzed

employing these tables. There were 35 children taking a 12-item test.

The sufficient sample statistics for our analysis were in = 35, n = 12,

g. = 1.2287, and s
2
= E(gi - g.)

2
/m = .9175/35 = .02621. The same prior

distribution for r (namely, v = 8, A/v = .25/8 = .03125) was adopted.

For notational convenience, we shall denote p
*
(m, n, A/v, s ) and

w
*2

(m, n, A/v, s
2
) as the values of P

*
and w

*2
for given m, n, AN and

s
2

.

g

Using the table for m = 30, n 12, we first find p (30, 12, .03,

* *
.02) = .4688 and P (30, 12, .03, .03) = .5138, so that p (30, 12, .03,

.02621) can be approximated by interpolating between these two values:

( 02621 - .02)
(.5138 - .4688) = .4967 .p*(30, 12, .03, .02621) = .4688 +

(.03 - .02)

Similarly, interpolate between p (30, 12, .04, .02) 2. .5162 and p
*
(30, 12,

.04, .03) = .5566, we have

*
P (30, 12, .04, .02621) = .5413 .

The next step is to interpolate between P (30, 12, .03, .02621) and

*
P (30, 12, .04, .02621) to obtain:

*
p (30, 12, .03125, .02621) = .5023 .

*
Following the same procedure, p (40, 12, .03125, .02621) was

approximated using the table for m = 40, n = 12:

P (40, 12, .03, .02) = .4449

gives p (40, 12, .03, .02621) = .4773;
P* (40, 12, .03, .03) = .4970

p (40, 12, .04, .02) = .4900

gives p*(40, 12, .04, .02621) .5192:
p
*
(40, 12, .0403) = .5370

*
thus, p (40, 12, .03125, .02621) = .4825.
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8

Finally, we interpolate between m = 30 and m = 40 to approximate the

value for m = 35:

*
p (35, 12, .03125, .02621) a 1/2(.5023 + .4825) = .1DR.

This value is very close to the exact value (.4920) obtained from our

previous analysis. In the same way, w
*
2(35, 12, .03125, .02621) can be

approxinuree from available tables. First,

w
*2

(30, 12, .03, .02) = .2255 :
% gives w

*2
(30,

o
*2

(30, 12, .03, .03) = .2702)

and

w
*2

(30, 12, .04, .02) = .2718')
gives w

*2
(30,

w
*

2(30, 12, .04, .03) = .3153

so that w
*2

(30, 12> .03125, .02621) a .2590.

12,

12,

12,

12,

.03,

.04,

.03,

.04,

.02621) =

.02621) a

.02621) a

,02621) u

.2533;

.2988;

.2336;

.2932;

Secondly,

w
*2

(40, 12, .03, .02) 0 .2028)
gives w

*
(40,

w
*

2(40, 12, .03, .03) = .2524

and

w
*2

(40, 12, .04, .02) x .2447
>gives w

*2
(40,

w
*2

(40, 12, .04, .03) .2932 \
,

so that w
*2

(40, 12, .03125, .02621) = .2388.

Finally, we arrive at

w
*2

(35, 12, .03125, .02621) = 1/2(.2590 + .2388) = .2489

Thus, the approximate values of p
*

and 0
*2

for the present data have

been obtained:

and

P
*
= .4924

0
*2

'' w
*2

- Co
*2

* .0064 .

29,1



Now applying formulas (1) and (2), the posterior marginal mean estimates

(yofY(thusii,ofygiven g and the corresponding posterior

2 ,

variances (or standard deviations ) can easily be computed. Theai ai

results obtained from the present analysis are compared with the previous

results produced by the program MARPRO described in Lewis, Wang, Novick, 1973.

In the table presented below, estimates from the present approximate method

are given together with those exact estimates (enclosed in parentheses)

obtained from MARPRO output.

Posterior Marginal Estimates of yi, ni, and ei

x. ig 8
3

x
j
I 9 x

j
10 x

j
= 11 x

j
= 12

_ ..

a
.7961 .8304 .8656 .9036 .9606

Wj

( .7961) ( .8305) ( .8657) ( .9036) ( .9606)

1.0877 1.1290 1.1745 1.2287 1.3280

1.1

i (1.0878) (1.1291) (1.1746) (1.2287) (1.3279)

ai

.1033 .1020 .1011 .1007 .1020

( .1029) ( .1018) ( .1010) ( .1007) ( .1018)

These comparisons clearly show that there are practically no differences

between the approximate and exact results. Accordingly, the posterior

probabilities prob(ni solg) approximated by our present analysis are

not expected-rrarge77;1tificantly from the exact probabilities in our

previous analysis. This is so because the normal approximations to these

probabilities have been found adequately accurate. The posterior

probabilities for no ,g .70(.05).90 computed from formulas (9) and (10)

using the current approximate estimates of 0
*

and a
*2

are presented below

to compare with the exact probabilities (enclosed in parentheses) obtained

by numerical integrations with the program MARPRO:
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= 8 x
i

9

prob(n

x
1

= 10

i
> n

0
Ig)

x
i

= 11 x
i
= 12

n
o

.0592 .1197 .2306 .4201 .7807
.90

(.0557) (.1174) (.2298) (.4193) (.7808)

.2042 .3327 .5055 .7096 .9356

.85

(.2035) (.3348) (.5082) (.7110) (.9379)

.4255 .3850 .7475 .8864 ,..1 .9848

.80

(.4304) (.5898) (.7502) (,8873) (.9861)

.6525 .7887 .8960 .9643 .9970
.75

(.6588) (.7917) (.8966) (.9642) (.9974)

.8249 .9117 .9651 .9908 .9995

.70

(.8276) (.9115) (.9642) (.9905) (>.999)

The small discrepancies between the exact and approximate probabilities

in the above table will not have effects on our decision making in practical

applications.

Sometimes, credibility intervals may be of interest to an investigator.

They can be approximated using formulas (11) and (12). For our present

example, we have computed the approximate posterior 95% credibility

intervals of n for each observed x :

x 95% confidence interval of n
j

'8 (.5991 .9233)

"9 (.6417 .9426)

10 (.6863 .9613)

11 (.7361 .9792)

12 (.8165 .9982) 2 96



11

The reader may check the exact posterior probabilities given in Table 7 of

Lewis, Wang, and Novick (1973) to convince himself that these

approximate intervals are sufficiently close to the exact intervals which are

very difficult to obtain directly from the actual posterior marginal density

functions of yi

In conclusion, it is felt that these tables will prove useful in analyses

of m-group proportion data (with equal sample size n) without recourse to

the.program MARPRO.
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1

1. Introduction

In two previous papers (Novick, Lewis, and Jackson, 1973; Lewis,

Wang, and Novick, 1973), the problem of estimating proportions in m

groups was studied with a Bayesian Model II approach, using the

arc sine variance stabilizing transformation, It was shown that

Bayesian Model II estimates were preferable to the conventional

sample estimates especially when (the variance of the transformed

variable.Y3 ) is small. This gain can be equated to substantial savings

of sample size in data collection. An extension of this work is the

problem of estimating proportions in two-way tables. For example, a

set of t tests may be given to each of m persons. We are interested in

estimating the level of functioning of each person on each test.

By level of functioning on a test, we mean the percentage of correct

responses that the person would make to a test composed of all of the

items which might have been selected for the particular test. The

model considered is the so-called Model II or random effects model

because the persons and the tests are, respectively, considered to be

random samples from larger populations of persons and tests. As in a

two-way analysis of variance design, one can assume that the variations

of performance are due to row effects (persons), column effects (tests),

and interaction effects. Thus, each of these effects can be separately

estimated and then combined to provide estimation of the proportions.

This estimation procedure would find an application in the area of

The research reported herein was performed pursuant to Grant No
OEG-0-72-0711 with the Office of Education, U. S. Department of Health,
Education, and Welfare, Melvin R. Novick, Principal Investigator.
Contractors undertaking such projects under Government sponsorship
are encouraged to express freely their professional judgment in the
conduct of the project. Points of view or opinions stated do not,
therefore, necessarily represent official Office of Education position
or policy.
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individually prescribed instruction. After completing a unit of

instruction, each student is given a posttest unit which consists of a

set of tests on related skills. Estimates of the level of functioning of

each student on each skill can be obtained to help make decisions on each

individual's progress.

The Bayesian Model II approach was proposed by Lindley (1971).

Theories and solutions for the general linear model have later been

discussed in some detail by Lindley and Smith (1972). The present

paper proposes to apply the Bayesian estimation procedures to two-

way tables of proportions. Essentially, these procedures incorporate

the collateral information provided by the other persons as well as by

the other tests into the estimation of a single proportion. Consequently,

some advantages are expected over the conventional sample proportion

estimates.

2. Basic Model

The observed number of successes x
ij

for individual i on test

j is mapped into gij by the Preeman-Tukey (1950) transformation:

n
1 ( 2.j

gij = y s
n + 1 inj ++ 1

(2.1)

where nj is the number of items in test j . We will assume that the x4j

are binomially distributed with parameters nj and via, aid that they

are jointly independent given the vij . Under these assumptions, the

gij are jointly independent and to a satisfactory approximation are/
normally distributed with mean yij = sin

-I
vaij and variance

vij = vj = (4nj + 2)-1, provided nj 18. The objective of this and

34:0



related transformations is variance stabilization. For further

di34ussion on this point, as well at on the adequacy of tht approximation-.,

the reader is referred to Novick, Lewis, and Jackson, (1973), and

Lewis, Wang, and Vo=ick, (1973).

To proceed further, we must specify a distribution for F, the

matrix of cell means Yij If we treat the persons and tests as

independent random samples from appropriate populations, then we may

follow the standard development of random effects models given, for

example, in Scheffe (1959, pp. 238-242). This development requires

only that the persons and tests be sampled independently of each other

and that the distribution of F be multivariate normal, given the

necessary means and dispersion matrix. It is then possible to define

0, a., 6.
,

and bid such that
j

Yij = 0 + a. + 8 +
ij

(2.2)

and such that ia it} {0 jt
} and (6

ij
} are independent normal with zero

means and variances .a, .0, and +6, respectively, conditional on these

variances and independent of 0 .

The definitions are given in terms of expectations of y
IJ

with

respect to the population of persons and the population of tests.

0
We indicate these expectations by and (j, respectively:

a
I
= J (/

IJ
) 0 ,

J
=

I'
ty ) e , and

IJ

6IJ Y/J
- e - a, - 8j
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4

In many cases where persons and tests have not been randomly

sampled, it may, nonetheless, be possible to characterize our beliefs

about the values of a
i
as exchangeable for the group of persons being

tested and for any other group selected from the population of interest.

In addition, a similar statement may hold for Sj and the population of

tests. Finally, our beliefs about the interaction terms (really

residuals from a simple additive model) 6
ij

may be exchangeable, at

least in the sense that we have no good reason to expect any particular

pattern of deviations from additivity in yij .

Lindley and Smith (1972), among others, have applied the work of

De Finetti (1937) and Hewitt and Savage (1955) on exchangeability to

siruations such as this. If we are willing to express our beliefs

about Y
ij

as described in the previous paragraph, we may conclude that

{a ) have the structure of identically and independently distributed

random variables conditional on some parameter(s). Similar statements

hold for {6j) and (6
ij

).

For mathematical convenience, we introduce the additional assumption

that all the above-mentioned conditional distributions are normal. It

immediately follows from definitions (2.4), (2.5), and (2.6) that the

expectations of ai, andand 614 are zero. Hence, we may write

and

b(91141a) 417/2 (- AA1a2%,
Yu e

« 4-0.t/2
exp(-

+-01E02j),

t/2 oiltE6L)

(2.7)

(2.8)

(2.9)

A final assumption required at this stage is that a, 1,3, and 4 are

jointly independent, given Oce +0, and ¢6 This assumption will be
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reasonable as regards a and e whenever the choice of persons is unrelated

to the choice of tests. The remainder of the assumption, namely the

independence of 0 from a and 0 jointly, is less immediately intuitive

but may be considered reasonable by noting that it is equivalent to

the assertion that knowledge of a and S tells us nothing about the

distribution of A, which may be a justifiable assertion on the basis

of ignorance.

We have now reduced the problem of specifying a distribution for

r (either by standard methods or with suitable exchangeability and

independence assumptions) to that of specifying 0, 4,0, +s, and . In

most cases, it will not be reasonable to assume that the values of

these parameters are known. Consequently, we suggest the following

distributional and independence assumptions: take ,

B'
and 46 to

be independently distributed as inverse x
2
variables and denote the

degrees of freedom and sum of squares parameters for these distributions

by (va, Xe), (vo, X0), and (v6, X6), respectively (see Novick and

Jackson, 1974, Section 7.3). Finally, treat 0 as locally uniform in

the range of interest and jointly independent of
a

,

B'
4, a, B, and
6' -

A . We believe these distributions will satisfactorily characterize

whatever vague knowledge we may have about the overall mean of yij

and its component variances. For reasons discussed by Novick (1969)

and by Novick, Lewis, and Jackson (1973), a uniform distribution for

0 will be acceptable; however, a proper prior will be required for the

variances (pa di
a

and 4)
6
). Still outstanding is the issue of supplying

values for the three pairs of inverse x
2
parameters. Ve defer discu,sicr.

on this point until Section 4.
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With the above definitions and assumptions, we find the likelihood

function and the joint posterior distribution of e, a, t, t, ,a, te, and

.6 given 9 = (gij) to be:

and

t(e, «, s, 419 ce ex1A- EE(gi.
3

- e - ai Oj 6ii)
2
/vi)

ij

i = 1, 2, m; j is 1, 2, ..., t;

bo, a, , 4, ta, 40, 4610

!!, 09) b(s, 6, 41.u, to, 46) boa, .a, .6)

exp { - 1/4 u(si, - 0 - ai - - 61.j)
2
/4j)

is

v + 2)
exp{- ;10 + Ea

2
)4 }

0 a a

+ vo + 2)
exg_ 1/2(a0 + E63) /.s}

-1/2(mt + v6 + 2)

exp(- 1106 + USli)/416) , (2.10).6
ij

respectively. We may use equation (2.2) to include r explicitly in the

joint posterior distribution (2.10). Specifically, we substitute

y
ij

- 0 - a
i

0
j

for 6
ij

and leave the other parameters unchanged. Sincc

the Jacobian of this transformation is unity, no further adjustments to

(2.10) are necessary. Thus, we have
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b(r, e, «, B, ta. p +61G)

-11(m + v + 2)
expf- h EE(g

ij 13
- y..)

2
/v.) 00 expf- 1/20

a
+

Eat)
/.al

-11(t + v + 2)
4,

0

0
expf- -(as E0j)/00/

-12(mt + + 2)
.6 expf- 1106 + u621.4)/06) .

fj

3. Posterior Joint Modal Estimates

(2.11)

3.1 Joint Modal Estimates for the Basic Model

Integrating b(E, 6, 54, §, Oa, (1)0, (1)610 in equation (2.11) with

respect to the nuisance parameters +(I, 40, and .6, we obtain the posterior

joint distribution of r, 0, «, and #:

b(F, 6, 9, gig)

-1(m v )
N2/v (X + Eat}expf-

j
ij

-1/2(mt + v )

.(x + EO
2
)

-1/2(t + v(3) 2
[Xis + EE(yid e ai 0.) 1

ij

(3.1)

For the posterior joint distribution of r alone, we need to integrate

expression (3.1) with respect to 6, a, and B from equation (3.1). Explicit

expressions for these integrations do not appear to us to be possible.

Therefore, we obtain the joint mode of r, 0, andand B as estimates of

the corresponding vector elements. Differentiating f 0 tri b(r, 0, a, SIG)
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with respect to 0, oi, 0), and yij and setting the derivatives to zero,

a system of equations is derived to be solved for the joint posterior

mode of 0, a, o, and r:
Nr

aay: v-1(gij ij
) i-16

ij
).' 0 P (3.2a)

24f $-61
EE(iii - - a4 - - 0 , (3.2b)

ij
ao

and

D$

Where

and

Y:r1 R.) . 0
uy6 / ,y6 (ii. -

(11 -I-

11.-
0,6 )15j - 016 klf.j - e - a.) = 0 ,

-4ict ' (Aa + E6c2i)/(m va)

' (A + e02)/(t + v6)
0 0

(3.2c)

(3.2d)

(3.3a)

(3.3b)

46 = 1X6 + EZ(iij - D - Cti .0.4)21/(mc + v6) . (3.3c)

Thus, we find the posterior joint modes:

36
yi. (6 + a + ) (3.4a)= 1-76 i

*
ai wm(yi. y..) (3.4b)

*
= (00(Y.j - Y..)

-1 -
-

+0+ t 06 + vi)
(g.

j
i..) , (3.4c)
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where

co u

M

* ;13

- -1- ' B

m~1'
+ t +6 + m +

9

(3.4d)

and the dot notation indicates average over the appropriate index. Also,

note that 6. = L. = 0

The joint modal estimates of F, e, a, and .13 then can be obtained by

an iteration procedure. The usual least squares estimates & = g..,

":11. = Bi. g.., Si = B.i g.., and Cij = gij can be used as initial values

of 0, ai, itj, and yij . Given these initial values, -44, .30, and 46 are

computed from (3.3) and used to obtain improved values of !, a, 0, and

via (3.2). Substituting these new values in (3.3), the foregoing process

is repeated to refine the estimates of to a, S, and ; . This iterative

procedure continues until some convergence criterion is reached. It should

be noted that it may converge to some local mode if bimodality or

multimodality exists.

Looking at the expressions in (3.4), we find that these

Bayesian modal estimates iij are weighted averages of observed gij and

the sum + al + bj . In terms of (3.4b-d), it is seen that ;$
i'

and

itj are functions of row averages Ci., column averages i.j and the overall

average y.. . Under the basic model described in Section 2, the cell

mean Y
iJ

for a specific cell (i, j) was assumed to be normally distributed

with mean 0 + a3 + and variance $4, conditional on e, mi, 0j, and (1),s .

Thus, the weight
6

assigned to the observed gij is a Bayesian
6 j
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reliability estimate of gij given fixed i and j. . In obtaining estimates of

y
ij

, observed g
ij

are regressed towards the value 0 + a. + . We may

also remark that with the definition of yij given by (2.2), yi. - y..

and y.. - y.. would b- -.east squares estimates of al and 6j, respectively,

provided y
ij

were observable. In this case, and d w
0
can be regarded as their

corresponding reliability estimates. Accordingly, the estimates al for al

are seen to be y.. - i.. regressed towards their common value a. = 0 .
0

This interpretation extends to the case of 0,

Having obtained the posterior estimates of yij, estimates of isij can

be approximated by:

2 -) sin Yij
4n1ij 2n1

(3.5)

following the previous study of the one-way case (Novick, Lewis, and

Jackson, 1973, p. 24). In obtaining estimates W
ij

of proportions, the

regression of sample proportions pij towards some common value corresponds

to that of gij since iij are monotonic increasing transformations of iij

3.2 A Special Case Where All Tests Are of Eaval Length

In some applications, the set of related tests may have the same number

of items, i.e., nj = n . This means that the error variances within each

1
cell are all equal {vj = v = 4T 1 71. In this case, the solut..ons for

(3.2) can be simplified. The joint modal estimates of r, e, (3, and §

given p, can now be written as:

iij = w6
gij

+ (1 - w6)(0 + al +

w6 gij + (1 - w6)[g.. + wa(gi. g..) + wo(g.i g..)]

ai
wa(gi' g")

w (g. - g..)

(3.6a)

(3.6b)

(3.6c)



and

where

11

g.. = EEg,.j'3 /mt (3.6d)

w w w
40

6
+ v ' a -1 - -1

+ t
1'6 +1/"" ")a 0

(3.7)

and ia, .46 are estimated from (3.3)

Equation (3.6) indicates that the Bayesian Model II joint estimates

of the transformed proportions y
ij

can be written explicitly as linear

combinations of observed values gij, deviation row means gi. g..,

deviation column means g. g.., and the overall mean g.. . The weights

w ot, w Of and w
6
can be interpreted as reliability estimates of the

components gi. - g.., g.j g.., and gij . Consider e, ai, and Oj given,

the basic assumptions in Section 2 imply

Var(gijI6, ai, Bj) = 06 + v

and

Var(y.
'

le a , B ) = 0
6

Hence, w6 is a reliability estimate of gij, conditional on (, ai, and 6j .

Thus, it is seen that joint estimates of y are observed gij regressed

towards .6 + +
j

.

The reliability interpretations of wa and we, may be less

straightforward. However, borrowing from the results of classical

random effect ANOVA, we obtain

2

Var(gi. 13.0 E(gim

g . . ))

a
+ t

-1
(06 + v)

since E(gi. g..)2 /(m - 1) is an unbiased estimate of Var(gi. - g..) and

i
CO tE(g4. g..)2/(m - 1) = t¢a + 06 + v from the expected mean squares

in random effect ANOVA. The sample statistic gi. g.. is an estimate
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of the row effect a
1.,

whose variance is assumed to be 4
a

. Thus, w
a

can be regarded as an estimate of the reliability of di =-gi. g.. .

Since a. = 0, we can write the joint modal estimates ai of ai in (3.6) as

ai - wa(gi. - g..) + (1 - wa)d. = wadi + (1 - wa)d. .

It is clear then that the di, being a weighted average of the least squares

estimator a
i
and the ccmmon value a., are regressed towards d. = 0

The same interpretation also extends to the case of the joint modal

estimates of Etj[j = woj + (1 - 400).] .

Returning to (3.6), we can write

jeil = gij + (1 - wd[g.. + wa(gi. - g..) + wo(g.j - g..) - gij) .

(3.8)

Hence, the regression of g
ij

towards the estimate 5 + &
i j
+ S =

g.. + wa(gi. - g..) + wo(g.j - g..) depends on the particular row i acid

column j . For instance, if the observed gij is greater than the value

4 ai + Sj, yij will be smaller than gij . The relative roles of a specific

row i and column j in determining the direction of the regression of gij

r%.st. ,41 61,2 reliability estimates w
a

and w
0

. for example, ii w
a

is much

larger than coo, gij will be regressed mostly towards a combination of gi.

and g.. .

In passing, it is also interesting to note that Yi. = El
ij

it

J

is a weighted average of gi. and g..:

"-ki. .. [1 - (1 - w6)(1 - wa))gi. + (1 - w6)(1 - wa)g..

where

= w6agi. + (1 - w6a)g.. , (3.9)

$a + t
-1

4,6

w
da

= 1- (1 - w )(1 - w )
6 a

a
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misa is interpreted as an estimate of the reliability of gi. conditional

on S and 6 since Var(gi.10, = + t-1(416 + v) and Var(yi.10, =

(0
a
+ t

-1
4, under the assumptions discussed in Section 2. Therefore,

estimates iv of yi. are observed row averages gi. regressed to the overall

average g.. . Similarly,

where

= tossg.i + (1 - wa)g.. (3.10)

+ m 141

6

wo = 1 - (1 --
-'

ws)(1 - wo) = "

+ m(i + v)

is an estimate of the reliability of g.j conditional on 0 and o .

3.3 A Generalized Case of the Present Model

Although we have discussed the problem of estimating proportions in

two-way tables in the context of testing, this same model can be extended

to a more general case where the indices n
ij

of the binomial distributions

for xij in cells (i, j) are all unequal. For example, one may be

interested in simultaneously estimating proportions of female students

in t different majors (Science, Art, etc.,) for each of m state

universities. In tilts case, we may take samples of different sizes nij for each

combination of majors and universities. Replacing all v. by v =via
4n

ij

1

+ 2

in (3.1), we obtain the posterior joint distributions of !, $, a, and

$ for this general case. Thus, the joint modal estimates of r, 0, «,

and @ can be found by solving system (3.2) iteratively except substituting

v
ij

for vj in (3.2a). The estimates nij of v
ij

are also obtained from

(3.5) with n
1.:,1

substituting for nj .
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It may be noted that in this generalized application, our problem

is similar to that treated by Lindley (1972) with two differences.

Firstly, Lindley studies the general two-way ANOVA design so that there

usually are replicated observations within each cell. In the present

case, there is only one proportion observed for each cell. Secondly,

whaveasimplercasewhereallwithinre
known, while Lindley deals mostly with unknown within variances.

4. Purther Discussion of the Prior Distributions

In Section 2, .a, .0, and .6 are apriori assumed to have independent

inverse chi-square distributions with parameters (va, Xa), {vs, A0),

and (v6, A&), respectively. In practice, the investigator must supply

values for these three pairs of parameters to make the analysis feasible.

It has been argued by Novick, Lewis and Jackson, (1973), chat

in the absence of any specific information, a reasonable choice for

the degrees of freedom parameter of the inverse chi-square distribution

is 8 . if we accept this choice, the problem is reduced to that of

specifying Aa, A, and A6 .

According to the assumptions made in Section 2, the prior

marginal distribution of yij conditional on 0, fa, se, and .6 is normal

with

and

6.(Yif le, . 1 .
6
) x 0

var(y I ' ) = + +if a' 13' a 13 6

332
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Now if we ask the investigator about what the variance of 7ii for a

randomly chosen person-test combination (i, j), we obtain an estimate

of the sum fa + $0 + $6 . This variance would usually be small, for

example, between .04 and .02. We can further equate this estimate to

the expected value of $a + $0 + $6 . Since independent inverse chi-

square distributions are assumed for +a, andand f6, we obtain

X
a B

X
6

.6) v
a
- 2 vB - 2 v6 - 2

(4.2)

Now, for illustrative purposes, assume the estimate of fa + $0

+ +6 is .02, i.e.,

A A X
a $ 6+

0

+ = .02 .

v - 2 v - 2 v
6

2

Combining (4.3) with the choice va = v$ = v6 = 8, we should take

va + vB + vd = .12

(4.3)

(4.4)

The investigator can now divide the total given in (4.4) among the three

sum of squares parameters according to his prior beliefs as to the relative

importance of person, test and person by test interaction effects on the

transformed Yij . However, he should not set any of these parameters

equal to zero for reasons discussed in Novick (1969). Thus, in the

absence of specific information, he might choose

as = as le as = .04 . (4.5)

In the next section, we shall examine, among other things, the effect of

these choices on the estimates of yij .
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5. Numerical Examples

To illustrate the application of the present model, a set of data is

constructed. There are 25 persons taking 5 related tests, each having 8

items. The observed proportions of correct answers are given in Table 1.

These data were analyzed with different prior inverse chi-square distri-

butions for 0a, 00, and 06 . In Table 2, estimated proportions (Wii) based

on prior specifications va = va = v6 = 8 and Xa = as = X6 = .028 are

presented. It may be noted that since w6(= .0071) is negligible compared

with w
a

and to
'

the estimates are nearly completely regressed

towards the combination wa(gi. - g..) wa(g.j g..) g.. = ai

(see equation 3.6a). Thus, the individually observed gij plays very little

role in estimating yij except through its contribution to gi., g.j,

and g.. . Accordingly, the estimates are largely dependent on the

combined row, column, and overall averages of observed proportions.

In order to study the effects of prior parameters (va, Xe), (vs, A6),

and (v6, X
6
) on the estimates 'i3, these data were also analyzed with

va = vB = v6 = 8, xa = x0 = x6 = .06, and va= v0 = v6 = 6,

as = Xa = X6 = .10. The results were presented in Tables 3 and 4,

respectively. As can be seen from these tables, Bayesian estimates of

0a, 00, and 06 are larger for bigger prior estimates (Xa/vco AB /ve, and

X6/v6) of these variances. However, the increment of a is smaller since

its estimate is dominated by the sample information (with weight mt

versus v&). Consequently, as prior estimates of these variance components

increase, w
a
and w

0
become comparatively larger while w

6
does not

change much. In general, there were not substantial differences among

estimates W
ij

given in Tables 2, 3, and 4. They reveal the common
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trend of regressing Iij towards 8 + di + .6i and assigning very little

weight to specific transformed cell proportions gij . As wa and wo

increase, estimates tij will increase for those (i, j) cells whose

marginal averages gi., g.j are both bigger than the overall average

g.. . Conversely, if gi. and g.j are both smaller than g.., corresponding

estimates Wij will be lower for higher wa and wo .

Finally, we may remark that for this data set, the classical estimate

of .6 is negative. The sample statistic EE(gij - gi. - g.1 + g..)
2

,

hose expected value provides an estimate of .6 + v, is 2.1491. Therefore,

the classical estimate of 46 based )n expected mean squares is found to be

36 = itt(glj - gi. - g.j + g..)21/(m - 1)(t - 1) - v = - .0070. ?or

reference, we also calculated classical estimates of +a and $6 based on

E(8
i'

- g..)
2
= .6878 and E(g.

J
- g..)

2
= .00495:

and

a
1

. = -it E(g
i

. - g..)
2
/(m - 1) - 6

6
- v] = .0242tit

0t3 = 1(m E(g.j - g..)2/(t - 1) - 36 - v] = .00034 .

It is suspected that in the present context, the classical estimate of

(1)6 + v is based on only one observation per cell so that it is subject

to large variations and thus highly unstable.
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Table 1: Observed Proportions

m= 25, t= 5, n= 8

Subject/Test 1 2 3 4 5 Average
gi.

1 .875 .750 1.000 .750 .875 .850 1.149

2 .750 .625 .750 .500 .875 .700 .975

3 .875 1.000 1.000 .875 .875 .925 1.254

4 .750 .500 .625 .750 .750 .675 .947

5 .750 .875 .625 .750 1.000 .800 1.098

6 .875 .625 .750 .500 .625 .675 .951

7 1.000 .875 .875 1.000 1.000 .950 1.303

8 .875 .875 .750 .875 .625 .800 1.076

9 .750 .875 .750 1.000 .875 .850 1.149

10 .875 1.000 .625 1.000 .750 .850 1.175

11 .875 .875 .750 1.000 .875 .875 1.177

12 1.000 1.000 .875 .875 1.000 .950 1.303

13 1.000 1 000 1.000 1.000 1.000 1.000 1.401

14 1.000 1.000 .750 .875 1.000 .925 1.275

15 .750 1.000 .875 .625 .875 .825 1.126

16 .750 .875 .625 .750 .625 .725 .997

17 .500 .875 .625 .750 .625 .675 .951

18 .875 .375 .500 .625 .500 .575 .859

19 .500 .375 .375 .625 .750 .525 .80S

20 .625 .500 .625 .500 .250 .500 .784

21 .750 1.000 .750 1.000 1.000 .900 1.248

22 .875 .875 1.000 .875 .750 .875 1.177

23 .750 .625 .625 .750 .625 .675 .946

24 .750 .875 .750 .500 .875 .750 1.026

25 1.000 1.000 .750 1.000 1.000 .950 1.324

Average .815 .810 .745 .790 .800 .792

8.i 1.115 1.129 1.039 1.101 1.112 g.. = 1.099
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Table. 2: Estimates of Proportions

vu = v6 = v6 = 8' au = X
6

= X
6
= .028

Subject/Test 1 2 3 4 5

1 .843 .850 .803 .835 .842

2 .762 .770 .714 .752 .761

3 .886 .894 .849 .879 .884

4 .748 .755 .699 .739 .746

5 .820 .829 .775 .812 .820

b .751 .758 .702 .740 .747

7 .906 .911 .868 .899 .904

8 .811 .819 .765 .803 .807

9 .842 .851 .800 .837 .842

10 .854 .863 .811 .848 .852

11 .855 .862 .813 .849 .853

12 .906 .912 .868 .898 .904

13 .939 .945 .907 .934 .938

14 .896 .902 .856 .888 .894

15 .832 .842 .790 .824 .831

16 .773 .782 .725 .764 .770

17 .748 .760 .701 .741 .747

18 .704 .710 .651 .693 .699

19 .675 .684 .623 .666 .674

20 .662 .671 .611 .652 .658

21 .883 .892 .844 .878 .883

22 .855 .862 .815 .848 .853

23 .747 .755 .698 .739 .744

24 .787 .796 .740 .777 .786

25 .914 .920 .876 .907 .912

7,t,u = .0068, ;T's = .0023, "46 = .0002

wu = .5357, 4)5 = .6620, w6 = .0071
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Subject/Test

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

20

Table 3: Estimates of Proportions

va = v8 = vS = 8
'

Xa = X8 = XS = .06

1 2 3 4 5

.849 .856 .801 .838 .841

.753 .762 .695 .739 .753

.897 .908 .855 .889 .895

.737 .745 .677 .727 .735

.821 .832 .766 .811 .824

.741 .748 .663 .725 .735

.920 .925 .875 .913 .919

.811 .821 .756 .802 .806

.847 .858 .796 .843 .847

.861 .873 .808 .855 .857

.862 .871 .811 .856 .860

.920 .928 .875 .910 .919

.956 .962 .920 .950 .955

.909 .917 .861 .899 .907

.835 .849 .785 .824 .835

.766 .778 .707 .756 .762

.736 .752 .679 .729 .735

.687 .691 .620 .672 .678

.650 .660 .586 .640 .651

.636 .646 .573 .622 .628

.893 .905 .847 .889 .895

.862 .871 .816 .853 .859

.736 .745 .676 .726 .732

.782 .794 .726 .769 .782

.929 .936 .884 .922 .927

is

CO

a

= .0100, 10 = .0049, iis = .0005

= .6256, wo = .8027, wo = .0153

3,33
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Table 4: Estimates of Proportions

va = va = v6 = 6, Au = AS = X6 = ,10

Subject/Test 1

1 .853

2 .746

3 .906

4 .728

5 .821

6 .734

7 .932

8 .812

9 .850

10 .866

11 .867

12 .932

33 .969

14 .920

15 .837

16 .760

17 .725

18 .672

19 .628

20 .613

21 .900

22 .867

23 .727

24 .778

25 .940

ia

(a

a

= .0141, 30 = .0095, 36

2 3 4 5

.860 .803 .840 .851

.755 .682 .729 .747

.918 .862 .897 .904

.734 .660 .716 .725

.834 .760 .811 .827

.739 .666 .713 .725

.935 .883 .924 .930

.822 .749 .801 .803

.863 .795 .848 .851

.880 .807 .862 .861

.877 .811 .863 .865

.939 .883 .920 .930

.975 .932 .963 .968

.928 .866 .907 .918

.855 .783 .824 .837

.775 .694 .749 .755

.745 .663 .719 .725

.672 ,595 .654 .660

.638 .556 .618 .631

.623 .544 .598 .601

.915 .851 .899 .905

.877 .819 .858 .863

.736 .659 .715 .721

.793 .717 .762 .779

.948 .891 .933 .939

= .0008

= .7001, w, = .8866, and w6 = .0257
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Marginal Distributions for the Estimation of Proportions in Two-Way Tables

by

Ming-mei Wang

The American College Testing Program

and

Charles Lewis

University of Illinois

1. Introduction

The Bayesian Mode II technique for simultaneous estimation of

proportions in m groups has recently been extended to provide estimates

of proportions in two-way tables by Wang and Lewis (1973). The random

effects analysis of variance technique is applied to the transformed

(observed) proportions

xii -Igli
1161-1/777 sint/4121n + 1),

where x
ij

is the observed number of correct answers for person i on test j

of nj items (Freeman and Tukey, 1950). The g
ij

are then assumed to

hbe approximately normally distributed with mean yii(m sin-1VNip w ere the

w
ij

are the true proportions of successes for person i on test j) and known

.
variance v

j j
+ 2)

1
. The next step is to express yij as a sum of the

The research reported herein was performed pursuant to Grant No.
OEG-0-72-0711 with the Office of Education, U. S. Department of Health,
Education, and Welfare, Melvin R. Novick, Principal Investigator.
Contractors undertaking such projects under Government sponsorship are
encouraged to express freely their professional judgment in the conduct
of the project. Points of view or opinions stated do not, therefore,
necessarily represent official Office of Education position or policy.
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overall effect 8, person effect ce
I.'

test effect Bj, and person by test

interaction effect 6
ij

(these affects are defined in terms of expectations

of y
ij

with respect to the appropriate populations of persons and tests, see

Wang and Lewis, 1973, Section 2). Applying the exchangeability theorem

(De Vinetti, 1937), we obtain estimates of y
ij

by the Bayesian Model II

procedure which incorporates not only the information provided by the

performance of all persons on the test j, but also the information contained

in the performance of the person i on all other tests into estimation of a

single yij . The resulting Bayesian estimates exhibit a regression of the

least squares estimates al. = gi. g.., Rj = g.j g.., and

tij gij g.j + g.. towards their respective averages (1., L, and

a.., which, in the linear model, are each zero. Because we are making

use of collateral information (provided by other tests as well as other

persons) in estimating a specific proportion Iv it is expected, as in

the one way m-group proportion case (Novick, Lewis, and Jackson, 1973),

that some advantage will be gained over conventional methods.

The earlier paper (Wang and Lewis, 1973) provides us with the joint

modal estimates of yip ai, 0j, and e . However, in applications to

decision making in the context of individually prescribed instruction

(IPI), the posterior marginal distributions of the yij will be more useful.

What is required in such applications is, for each test, the aposteriori

probability that a person's test score is larger than some prespecified

level, and this is required for each person and each test. As in the

case of estimating proportions in m groups, algebraic expressions in closed

form for these marginal distributions do not seem to exist. Hence, the

marginal distributions of the yij will be studied numerically in the present

paper. In par6icular, we shall attempt to apply the numerical methods
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developed by Lewis, Wang, and Novick (1973) in connection with estimating

m group proportions to o__ present problem. Again, we will assume that

Ealtestscomernedareaequallength(1.3 = n for all j) to retain

certain mathematical simplicity.

In the ANOVA terminology, the model adopted in the previous paper

is the so-called non-additive model which includes interaction effects.

Three variance components +a, +0, and fa of person, test, and interaction

effects, respectively, are postulated to account for the variability of

yij . In some cases, an additive model, one which assumes no interaction

effects, may be a satisfactory alternative to the more general non-additive

model. Specifically, in the context of IPI, the students are tested on

related skills after studying the prescribed materials on a subject. Thus,

the posttest unit consists of a set of tests which are very similar. If

the tests are sufficiently similar (approaching T-equivalence in the

transformed units) so that the interaction variance component 4,6 is

negligibly small compared with the other variance components, it will

be adequate to choose an additive model in our analysis (see discussions

in Lord and Novick, 1968, Section 7.6). In obtaining joint modal

estimates for yij, ai, Bj, and 0, we have found that the contribution

of individual gij to iij is negligible in nearly all examples we analyzed.

This indicates that the estimates of yij obtained from an additive model

rill be very close to those provided by the non-additive model. We may

thus hope the additive model to be adequate for these data. The advantage

of assuming an additive model is that the computational problem in

obtaining marginal estimates for yij will be much easier to handle while

the amount of computational effort ;especially computer time) required

for this same purpose in the non-additive case is beyond practicality.

We might note that while the arc-sine transformation is primarily designed
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for variance stabilization, it also has a strong normalizing effect, which

we have relied upon, and also some tendency to yield additivity. Our

findings in these present applications seem to confirm remarks along these

lines made to us by J. W. Tukey. For these reasons, the additive case

of estimating proportions in two-way tables will be briefly discussed next,

followed by the topic of marginal distributions.

3 1 :i



2. An Additive Model for the Estimation of Gammas

In this section, we discuss a model which assumes no interaction effect

for yij . Thus, we may formulate

Yid
e + a

i
+ f3j (2.1)

where e ai = ejyij - e, and 0j = /4yij e are defined in the

appropriate person and test populations. It is assumed that the person

effects are exchangeable apriori among all persons in the population.

Similarly, the test effects are assumed to be exchangeable in he test

populatimuwefintherassumethatheastributionsofaiand.are normal0j

and independent of each other. Finally, the prior distribution of 0 is

assumed to be locally uniform within the range of interest, and independent

of the distributions of a
i
and 0 (see also discussions in Lindley and

Smith, 1972, and Smith, 1973). Thus, we obtain the likelihood and

conditional prior density of e, s, and g as:

and

t(e, s, exp( EE (gij e Oj)2) (2.2)

_

b(e, a, 01.
a

,

$ i
) =

2
exg-Ea

2
/2(1)

a} 0

2
exp(-t0

2
),(2.3)

where c = (gii) contains the transformed (observed) proportions gij for

m persons on t tests and the vectors a and 0 contain the elements ai and

0j, respectively. The corresponding matrix for the elements yij will be

denoted I' . The zero means for the distributions of
i
and are justified

from the definitions of these effects. Note also that we discuss only

the case of equal length tests so that v = (4n + 2)-1 is used in

Equation (2.2). To complete the model for our analysis, we assume, as

usual, independent inverse chi-square prior distributions for the variances

346



6

fa and fo, with parameters (va, Xa) and (v8, X0), respectively (see Novick

and Jackson, 1974, Section 7.6). Thus,

+ 2) -1/2(v
0
+'2)

b(fm, .0) c fa exp(-Xa/20a) fa exp(-X /24
0
) . (2.4)

Combining Equations (2.2) through (2.4), and integrating with respect

to f
a
and 0 we derive the posterior joint density of e, a, and 0 to be:

b(e, «, s1 G) Pket Eai]
(x +2 -11(m va

)
-1/2(t + vs}

expf- 3.1t- (g11 e ei)2) . (2.5)

Therefore, the joint modal estimates of 0, a, and @ are found to be:

where

and

g..

ai = w.(gi. g..), a. = o

w - = 0
J

wa = a/6a '
+ t-lv) w

0
=

0
/(is + m-iv)

(2.6a)

(2.6b)

(2.6c)

(2.7)

.;a = + Eq)/(m + va) , is = (A0 + EA; )/(t + vs} (2.8)

In terms of Equation (2.1), we obtain estimates for the yij:

yij = + ai +
J

= g.. + w
a
(g g..) + w

B
(g.

j
g..) . (2.9)
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Estimates of proportions based on yij are obtained from the sine-squared

transformations as described in our earlier paper.

It should be pointed out that the iij are the estimates of yij based

on the joint modal estimates 0, a, and which maximize the joint posterior

density of 0, a, and (3. . These estimates, yij, are not joint modal

estimates of the yij from the full joint posterior distribution of the yij .

The joint distribution of the mt variables yij, in this case, is degenerate

with actual dimensionality m + t - 1 (< mt). To see this, we recall that

the definition in Equation (2.1), in effect, shows that there can be only

m = t - I linearly independent rows (or columns) in the coefficient matrix which

generates yij from 0, a, and S . That means, there exists at least a

suitable subset 0 of m + t - 1 elements of the set 2 = (y
ij

} such that all

the other (mt m t + 1) elements in the complementary subset C-0* can be

expressed as linear combinations of the elements in n . For example, given

Yll' y12, y13,
and y21 for the case m = 2, t = 3, we can write:

and

a2
B2 = Y21 + Y12 Yll 'Y22

Y23 u2 83 Y21 Y13 Yll

Hence, the joint density can be defined in a space of dimensionality

m + t - I at most (i.e., for at most m + t 1 of the elements yij).

However, if we take any suitable subset C
*
of m + t - 1 elements from

the whole set C, the joint modal estimates of the yij contained in SI*

and the variables a. and B. are identical to those Yid obtained from the

joint distribution of 0, s, and @ . This can be shown by applying

Lemma 3.2.3 in Anderson (1958, p. 47) and noting that the set of variables
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(a , a., B.) is a one-to-one transformation of the set (e, «, B). Thus,

the joint mode of (a , a., B.) can be written as:

ij
+ +

i j

for all yij contained in Q $ and

&. = Ed
i
= 0

'
=

j
= 0 .

In the above example, we can state that the joint modes of
y11' Y12' Y13'

Y21, a., and B. are
21 le (12' .7(13' (21'

a. = O and S. = 0 as having

obtained from the joint distribution of 0, a, and .13 .

To illustrate how this additive modal approximates the more general

non-additive model used in our previous paper, we have re-analyzed the s, le

data with the present procedure. The data were explained in Table 1 of

Wang and Lewis (1973). The same prior parameters (vet = 8, Xa = .028)

and (V = 8, AB = .028) used in the non-additive case were adopted for the

present analysis. Estimates of proportions obtened in the additive case

are presented in Table 1. On comparing the results given in this table

with those given in Table 2 of Wang and Lewis (1973), it is clearly seen

that there are practically no differences between the two sets of estimates

of proportions obtained from additive and non-additive models.
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3. Conditional Posterior Distribution for Gammas

3.1 Additive Case

The additive model described in Section 2 can be summarized by

the following statements:

(i) &le, a, Et has a multivariate normal distribution with mean

vector y = AC and dispersion matrix vi, where gi = (0, a', 8')

is a vector of order m + t + 1, and

1
1

1

1 I
t

I

-t
1

1 .
11

-t -t
. i .A= 1 1

-mt 1

1

.

I

0 1 I /
-t1 -

I
t

E

is an mt by m + t + 1 matrix, where 0 indicate zeros in the

rest of the matrix.

Here g' and y' are row vectors whose elements are the rows of G and

E, respectively. Note that the notation lk is used to denote a k x 1

column vector, all of whose elements are 1 and 1k an identity matrix of

order k The likelihood of § can then be written as

2,(glg)
«

exp { - 1,7 4014 - (3.1)

(ii) The conditional prior distribution of given .tx and .0 may be

written in the following form:

b(gl.a, .0) = exp { - k[Ea21./4a + E0240])

= exp(- kcp-g), (3.2)

where D is the diagonal matrix of order (m + t + 1) defined as

0

4)a -m
-1

0

-1

.13 It
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Combining Equations (3.1) and (3.2), the posterior conditional

distribution of given Oct and .0 is found to be

b(§10a, 0,

M 2,41§) b((0a, 00)

a ex0- 2V (6 14) 141?-§)

1 -
a exp{- r (g Bittg)'B 1(i (3.3)

where B1 = 6'6 + NT- is a nonsingular square symmetric matrix of order

(m + t + 1) and can be explicitly expressed as:

B
-1

r
mt t 1'

-111
m 1'

-t

(t += t l (3.4)lm 00a)Iril 1 l'
-m-t

m 1 1 1'
t t m (in + vbbo.iti

From Equation (3.3), we recognize that the conditional distribution

of (, given and.0, and g is a multivariate normal with mean vector

(00a, OB, g) = Wg and dispersion matrix Var((1.a, 00, g) = vB .

Thus, the mean vector and dispersion matrix can be obtained if the matrix

1 -1
B is inverted. Since the inverse of B is not easy to obtain directly

by examining Equation (3.4), we now try to find the posterior conditional

mean vector and dispersion matrix of ( by first considering the conditional

distributions of g, [3, and 6 separately.
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In terms of Equations (2.2) and (2.3), we have

1)(54: Ofa: 40: 2)

. I get a, 09 12(6, a, PK: 00) de

f 1 EE
%2 1 r 2 1 1,021

m exp(-
ij 2A agi 2A ..1'2v

ij
ya To j

m exp(- Wv-ltE(gi. g.. + a.)2 + 0-a1 Ea2))

exp( - hfv-lm E(g. - g.. + 002 + 0-1 EBB)) . (3.5)

Thus, b(a, Oka, 00, 9) can be factored into two parts and each involves

only a or p . This implies that the conditional posterior distribution of

a and §, given 00 00, and g, are independent of each other. We then

can write

b(a, 00a, 00, 2) b(4140,1, 4,0, 9) 12(0.0 fa, 9) . (3.6)

We may now proceed to find the posterior conditional mean vector ua and

dispersion matrix C
a
of elf

a
,

et
G by observing:

bqt100,, fat 9)

-
cc exp(-1/2(v it E(gi. - g.. - ai + cc.)

2
+ Oct

1
Ei))

exp(- 2÷t [Dal - 2RaEai(gi. - g..) -- my? + RaE(gi. - g..)23)

m exp( - 117 (E {ai Ragi. + Rag..)
2
- mRa a2 d)

a

m exp { {a ua) t Ca
1 - aa))

352

(3.7a)



where

and

12

11; = fygl. - g..), Ra{g2. g..), Ra(gm. g..)] (3.7b)

-1 t
C mel [I - 1
-a vR

a
-m in -m-m

11

R
a

f
a
/(f

a
+ t-lv) . {3.7c)

It follows that litlfa, +0, G has a multivariate normal distribution with

mean vector u
a

and dispersion matrix

vR R 1_1'

C + '-a t -m Ra) {3.7d)

Similarly, the posterior conditional distribution of 1314)a, 0, G is

found to be a multivariate normal with mean vector

uS = (110(g.1 g..), R0{8.2 g..), Re(g.t g..)] , {3.8a)

and dispersion matrix

where

[

1/110 R044

-B in

i
-t t{l - R

8
)

R
13

= $s / {$8 +
6

(3.8b)

{3.0c)

In order to obtain the conditional mean of Olfa, +6, G, it is easier

to first consider the conditional mean of Olfa, 00, G, a . Since

b(0, alfa, fa, g)

f t(0$ (4, @lc) b(6, a, .00,0 00) cu

1 "- Eto -0..-a -1-a.)
2

- 777727-77 g*iE( -e-ot )
2
)exp{- w

zmuTo via i
"'J. 2v °
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we find for given a,

b(014)00 4,0, 2, «)

This implies

.12mt r
03.IJ J

1a expt
2(m$ v)

e (g..

6(elfu, (i)0, G, 0.,t) = g.. a.

Furthermore, referring to Equation (3.7b), we have

Hence,

(:4103.14)00 4.0, 9) - reo(ailsot, 4,09

a

i g..)

i

= 0 .

9) - 6.$(01.0
0 = g..

13

(3.9)

The results of Equations (3.7b), (3.8a), and (3.9) lead us to conclude:

oeijK, fa, 2) - (e + ai + 6i K, 4.0, 2)

= g.. + Re(gi. g..) + R8(g.1 g..) (3.10)

It may be remarked that the conditional posterior mean of yij given 0 fo,

-
and 9 takes a similar form to that of y

ij
expressed in Equation (2.9) with

Ra, R8 replacing wa, wo, respectively.

To obtain the conditional variance of y
ij

given 4)
a

,

0,
and c, we

have to find the dispersion matrix vB of El (0, a', 0'). For this purpose

we make use of the results (§14)a, fa, 9) = BA'g . Since
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W01 - tgl., tg2., tgm., mg.i, mg.t) ,

and

441$0 Dr

= (g.., Ra(Br-g"),

as indicated by Equations

mtg..

tgl.

tgm.

mg.,

mg.t_

(3.7b),

Ra(801.-g..), 110(g.,

(3.8a), and

g..

Ra(gi. g..)

Ra(gm. - g..)

R (g1 g..)

R (g.
t

g..)

-g..), Ret(g.t-g..)]

(3.9), we may write:

(3.11)

The elements of the matrix B are known except those of its first row and

first column. Explicitly, if we denote

and

Cov(0, ailfa, 4S,

covo, o fj 0,

9) = vdi

9) = vej

varcelf., = va

it is easy to verify that

2. v-1 Var(glfa,

d

e

d'

cIv
-a

9'

t3'

e'

C)

90/v_

i = 1, 2, ..., m

j = 1, 2, ..., t

3 5
(3.12)
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where = (dr ..., dm), e' = (el, ..., et), Ce and C0 are given in

Equations (3.7d) and (3.8b), respectively, and 0 is an m x t null matrix.

Note also that Cov{a 0 If , f
0'

= 0 because the distributions of

a and B given fa, $0, and G are independent [see Equation (3.6)]. Entering

all the known elements of B as shown in Equation (3.12) into Equation

(3.11), the unknown elements a, di, and ej can then be found by solving:

di(mtg..) + Ca

R
e (mtg..) +(=)

and

a(mtg..) + t E
i

It is easy to verify that

d

2
R
a

E tgi = Re(gi. g..)

mg.
j

= R
0
(g. - g..)

g..

Equation (3.13) are;

ailfa, fop ,

Oilfe, $0, q) ,

."1 17 /al.& A=V vatvgy
a 0'

,

n%1.2,
-

(3.13a)

(3.13b)

(3.13c)

(3.14a)

(3.14b)

(3.14c)

tgi.
mt(1 R )

a i

R
0

2

Emg + mt(1 - R )
0 J

di gi. + m E ei g.i =

the solutions to

R
a

=
-1

Cov{0,v
i mt(1 - R)

R
0 -1

e
j mt(1

and

1
a =

Mt

Cov(0,
R )

v

B

R
, .

e .

RO
-r

1 R 1 - R
a

The posterior conditional variances of yij given fa, f0, and G are

obtained from Equations (3.7d), (3.8b), and (3.14a) through (3.14c), and

the fact Cov(ai, Ojlfe, $0, 9) = 0:

35t



16

Var(Yijkle fp 0

= Var(0 + ai + ms, 0

= Ver(01$0, $8, + var(eil$0 $8, + var(Bil.a, .st

+ 2 Cov(0, aika, $8, G) + 2 Cov(0, Ops, .8, 9) + 2 Cov(ai, Bil,a, ,B,

[i=v
R
it +

R
+

mt
B

1 - Ra - RS

t m

il

. (3.15)

As for the distributions of yijka, $8, G, they are each known to be

normal with mean and variance given in Equations (3.10) and 0.15),

respectively. This follows from the definition of the yij as linear

combinations of e, c., and s [see Equation (2.1)), and the result that

e, a, dfa, (Ps, c has a (m + t + 1)-variate normal distribution [see Equation

(3.3)). In passing, we may note that similar results of the conditional

means of e, g, and § given fa, .8, and c have also been derived by Lindley

and Smith (1972, Section 3.1), in connection with a general two - factor

design without interaction.

3.2 Non-additive Case

In the non-additive case, the joint distribution of y is nondegenerate

with dimensionality mt . This can be seen by examining the dispersion

matrix C of y given e, fa, $8, and $6 under the assumptions made in the

earlier paper by Wang and Lewis (1973):
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(4s+.6)It+octiti feltt
. . .

1

4 4
¢B I

t 1°B446)It+Sai t11 It .
1 1

4 4
I .

i 1 .

4
4) I

-4

1

1

(4) +0 )) 1 '

B
I
t
+4
u--lt

17

(3.16)

The matrix g is a nonsingular symmetric matrix of order tut . In contrast,

the dispersion matrix c of / given 0, fa, and
Os

in the additive case as

summarized from the assumptions made in Section 2,

C=

0 I +0 1 11 1 0 1 . . .at a-t B-t
1 1

+ 4-

0
B-t

I

SBIelPaltl /

I .

+ 4-

i

1

+
Est

I

sit

f I l'
0-t

+4
a-tt

(3.17)

is singular, of rank m + t 1 (< tit). Hence, as mentioned earlier, the

joint distribution of IT in this case is degenerate with actual dimensionality

m+ t - 1.

As a result of the above distinction, the posterior conditional

distribution of yij given fa, fo, $, and 9 in the non-additive case can

be approached in a somewhat different way. Under the assumptions made,

the prior distribution of x can be described in two stages:

(i) Given 0, fa, fo, and s, x is, apriori, assumed to have an

mt-variate normal distribution with mean vector 01 and dispersion

matrix C displayed in Equation (3.16). Note that for
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convenience, we have used 1 without subscript to denote

an mt x 1 vector of ones (viz, 1 = 1 ).
mt

(ii) Apriori, 0 has a uniform distribution.

Combining these two statements with the normal likelihood of y given 6,

it can be shown, after a little algebra, that:

where

b(y10a, 00, 06, g)

cc exp { - 1117 (X - - g) - elPc*-1(y. - el)) de

a expl-'(y - v-le*gpe*-1(y - v-1B* 0) (3.1E)

*
B
*-1 71

I + C
4

-
*4

1(1'9
*4

1)
-1

1 9
*4

at

is an mt x mt nonsingular symmetric matrix. Thus, we conclude that the

posterior conditional joint distribution of y given Oa,
B

(1) , and G

is a multivariate normal with mean vector,* =v
4

B*g and dispersion

*
matrix B .

Knowing the distributional form of yl0a, 00, 06, 9, we now proceed to

find a
*
and B* without actually carrying out the matrix inversion of

B
*-

1. Applying a lemma to be given later in Section 4, and referring to

Equation (2.11) in Wang and Lewis (1973, p. 7), we can derive by

integrating the expression w.r.t. 0, st, and §:

b(y1+0 00, fp I)

m - 1 t - 1

a 06-1/2(m 1)(t - 1)
(0a + t

-1
06)

2
(Oa +

-1. 2
96)

expl-
1

EE (g Y )

2 1
- EE (V Y Y. + Y.)

2
)2v 20d ij

ij

expl
1

E (V Y..)
2 1

y..)
2
J

1 ,
20a + t

-1
0
a
) 2(0 + m

339 (3.19)
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Since we have shown that b(y100, 00, 06, s) is a multivariate normal

density, the conditional mean of given fa, 00, 06, and g can be found

by solving the set of equations:

a ga b(110,0 40, 06, WaYii = 0

for Yl . . After some lengthy algebraic manipulations, this procedure leads

to the result

Nilfe 001 .61 m R:gij a R*08..j + (1 - R: -

(3.20)

where

06 Oa 0
B

R
6
= , R

a
= and R

s
=
0 + m

-]
+ v)06 + v 0

a
+ t

-1
(06 + v)

0 6

(3.21)

To obtain the conditional variance of yij given fa, 00, 06, and g,

we make use of the result 00, 06, v
-1
8
*
g . This implies

that the mt diagonal elements of the matrix areare the coefficients of

gij in expressing (Yijka, 0B, 06, g) in terms of the elements of $ .

Thus, we find from examining Equation (3.20)

* * * *

*
R
a

R
0

1 -- R
a
- R

0*
Var(y

ij
10
a

, 0 , 0
6

, g) = v[R6 + (1 - R6)(7. + 7
mt

+ )1 9$ -

(3.22)

because Equation (3.18) indicates that the diagonal elements of the matrix

1) are the variances of Yijka, 00, 06, g . In summary then, we have

shown that the posterior marginal distributions of yii, conditional on

Oa, 00, and 0
6'

are normal with means and variances given by Equations

(3.20) and (3.22), respectively.
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4. Posterior Marginal Mean Estimates for Gammas

Having obtained the conditional means and variances of yij given the

variance components (fa, fs, and .6), we now proceed to find marginal

mean estimates of gammas by the same procedure used in Lewis, Wang, and

Novick (1973). We shall restrict ourselves primarily to a consideration

of the additive case as we have not yet been able to develop a practicable

numerical algorithm for the non-additive case.

4.1 Additive Case

4.1.1 Posterior Distributions for the Variance Components

To obtain the posterior joint distribution of .a, .8, consider the

function

130, 51, @ISce fs, 6) - go, «, glo 0), a, 0+0 .8),

then,

1)(0, dfce .13'

= b(e, a, @km, fa, 6) d@

_t m

(fa + m
-1

v)
2

f
2

exp { -
1

Zai
2 1
- EE (gii-g. -a

i
+a.)

2}

exp { - h E (g.j - 0 - a.)
2
/Os m iv))

Thus,

b(al,a, fa, 0

(4.1)

= f b(e, alga, fs, S) de

(Pa exp(-

t-1 m

a

mlv) 2 -T 2 1

2,
Eat 77 "(gij-gTaik")

2

}

a i ij

exp { - h E (g. -- g..)2/0a + m-10) . (4.2)

3 i

3 1



Also,

b(c!, 00a, 061

- I b(0, st, sofa, 00, g) de

m t

1 2
cc Oa

2
exp(- y7- Ea,2

2
/ 00 exp{- E04}

wa i
'0 J

f

21
exp{- EE(g

ij
g.. - a + a. -- 0 + 0.)

2
.

v
ij

Since

b(slOot, Os, g) I b(s, plow 00, g) d§

and

21

(4.3)

EE(g
ij
-g..-a +a.-0

j
+t.)

2
= EE(g -g. -a +a.)

2
+ ml(g. -g..-0 +t.)

2
,

ij ij

we find from Equation (4.2) and (4.3):

t - 1 t

1 m
1 = I (0 + m

2
00 exp{ --

2
E0

j
z(g. - g..

j
+ 0.)

2

0 2v
0 J

expel E(g. - g..)
2
/(00 + m 1v) d# .

J j

Rearranging the above equation, and making the replacements 00 = x, v = c,

m = k, t = t, and slt = (n1, n2, .., nt) #1, we arrive at the following

lemma:

2 1 k
I x exp(- NEnj E(g.j g.. nj + r.)2} do

t - 1

= (x + k-lc)
2

exp{-
1

E(g. g..)2}
2 (x + k c)

(4.4)
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Applying the above lemma to Equation (4.2) and noting tnat

Egg
i

-g..-o
i
+n.)

2
= EE(g .-g .-g..+g..)

2
+ t E(g.-g..-a+n.)2

,

2.3
j 3, i3 3

it is easy to verify

III b(e, a, $o, 0 de da d8

* I (PB, 13) dS!

t - 1 m - 1

« 4
13

+ m
-1

v)
2

(fa + t
-1v) 2

exp( 1
-1

r(g. g..)
2 1

Z(gi. g..)
2
}

24 + m v) j 2(fa + t v)

(4.5)

It is further observed:

b4a, .010 = III bo, a, 04)00 fa, 0 b4a, fa) do (la d13.

= b(fa, 4)0) III bo, a, .0%, fa, g) de da d8 , (4.6)

where b4a, .0) is given in Equation (2.4). Consequently, upon

substituting the expressions in Equations (2.4) and (4.5) into

Equation (4.6), we have shown

b($a, 4.01g) « h4a10 h(.0Ig) (4.7)

where
m 1

exp(
-1/2(

A

b(faig) a (fa + t
-1

v)
va + 2)

SR
} ,

2 ($a t v/ a

(4.8a)

and
-

t - 1
2

-' II (v + 2) Sc X8

b08113) 0: ($0 + in v) $8 . exp f-
124 + m v) 4

)

0

3 3 (4.8b)
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with SR = E(gi. g..)
2

and S
C

= E(g. g..)
2

. The fact that b(fa, f$10i j

can be factored into the product of 1,0410 and b(folg) shows that the

posterior distributions of fa and f
0
are independent and their density

functions are given in Equations (4.8a) and (4.8b), respectively. It may

also be pointed out that the mathematical forms of b(fals) and b(f01g) are

similar to that of b(fr1g) in the m-group proportion case [Lewis, Wang,

and Novick, 1973, Equation (2.2), p. 6].

4.1.2 Posterior Marginal Means and Variances of Gammas

Having discussed the conditional posterior distributions of yij given

fa, .0, and g in Section 3.1 and the posterior distributions of fa, fo in

Section 4.1.1, the posterior marginal mean Yu of yij can be readily

computed as

. . -(y le e e (y 4) g)vy
- f a 0' -

a 0

= 1.6 0. (g.. + Ra(gi. - g..) + Ro(g.j - 13.01

% .0

g.. oa(gi. g..) Po(g.i g..)
(4.9)

where pa = 4,, po = ea, 110, and Ra, R
0
are defined in Equations (3.7c)

wa YO

and (3.8c), respectively.

The marginal variance of yij can also be obtained by using the relation:

Var(Y .10
ij

= I' f [liar (yij 'fa, +0, + Var IC (yiilfa, fir
fa, +0

(4.10)

where the Var notation is used to denote

fa , f
0

Var [e- (whc y» a if t (*to

n
(wlx, ex 8y 4(wlx yil

2
f(x, y) dx dy .

x,
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From Equation (3.15), we obtain:

4a
64s[VarNi10a, 00,

0

a

R 1 - R - R
4,

0

[v( + +
ma

0

t

, m 1

POJ
= vi +

"a nitmt mt

The second term in Equation (4.10) is also easy to obtain:

i%

Var [4i; (Yiii0a, 00, 0]

Oa, 00

= Var [g.. Ra(gi. g..) + Ro(g. g )]
Oa, 00

=

24

(4.11)

(g1. g..)
2
Var Ra + (g.j g..)

2
Var Ro

004 0
(a

R2 p.21 g..2d4, R2
-

02
] . (4.12)%*1. 6 / NUJ / 14, 0

Hence, we have reduced our problem to numerical computations of the values of

pa' p R2, and R2 . The integration problem here is closely related
0' P

?I

a
a .00 0

to that dealt with by Lewis, Wang, and Novick (1973). Thus, the same

integration algorithm described there can be adopted for the present

applications.

In general, we are interested in providing estimates for the proportions

vij . This objective can be accomplished by applying the sine-squared

transformations to yij:

: 1
W
ij

= (1 +
1

) sin
2
y.. -
'3 4n '

(4.13)

(see Novick, Lewis, and Jackson, 1973). A numerical example will be given

in Section 5 to illustrate the estimation procedure outlined in this section.
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4.1.3 Approximations to Marginal Probabilities

In theory, the posterior cumulative probability that w is less than

or equal to some value can be computed by

prob(xij 1104)

prob(Yij < Y010

YID

= b(yijig)dyii

roe oo Yo

jo o
b(YijI40, 00, f)b(f0, .010dYi3 40 40

prob(z < z
o)b(4) 1g) 1)(001040

d4
prob(z

where y
o
= sin

-1
VW z is a standard normal variate and

(4.14)

0z (4.15)
o

1 - R4 R0) -111

mt

However, in practice, it is very time-consuming (beyond reasonable time

limit with the algorithms we have tried) to evaluate this probability.

We thus suggest a less ideal approach which is an extension of the result

in Lewis, Wang, and Novick (1973). There it was found that the

posterior distribution of yj, given g, can be satisfactorily approximated

by a Normal distribution with mean and variance equal to the posterior

marginal mean and variance of y, respectively. We venture to generalize

this normal approximation to the present case. That is,
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prob(z < ty0 -e (y, I g))/(Var(Tii10)1/2)

will be evaluated to approximate prob(wii < nolg). While this

approximation may not be as accurate as in the original application

to the m-group proportion case, it should be sufficiently precise for

deciding whether a student should be advanced to the next unit in IPI,

provided the probability being estimated is not in the extreme tails.

4.2 Non-additive Case

Following the same procedure employed in Section 4.1.1, the posterior

joint distribution of
a

,

'

and
6

for the non-additive model can be

derived using Equation (4.4) given in the lemma:

1:04a, fp ol0

where

m-1 t-1

46 + -1/4(m-1)(t-l)
(4).1 + t

-1
(46 + v))

2
(4) + m

-1
($ 4. v))

2

RexpE
S 5C

b(fa, 410, .6),
-

2(+6+v) g+a+t 1(+6+v)] 2c+0+m 1006+v)]

SI E(gij - gi. g.j + g..)
2

,

ij

,

SR = E(Bi. g..)
2

i

Sc E(gi g) 2
,

(4.16)

and b(f
a

,
0'

+
6
) is a product of three independent inverse chi-square

densities with parameters (vs, Xa), (vo, Xid, and (v6, X), respectively.

It may be noted that a similar result has also been obtained by Box and Tiao

(1973, p. 331) in their discussions of random effects ANOVA.
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In contrast to the case of additive model, it is found from the

Expression (4.16) that the posterior distributions of the three variance

components are not independent of one another. Consequently, triple

integrations are required tc obtain posterior marginal means and variances

for yi/ . It appears, from our empirical experience, that the computer

time needed for a triple integration of a function of the form in Equation

(4.16) is at least the cube of what is needed for a simple integration of

the function of the form in Equation (4.8a) or (4.8b). Unless Some

efficient approximations to these triple integrals can be found, this

technique will not be practical for applications. Since we have not been

able to devise an efficient algorithm which would complete this analysis

with reasonable cost, we will not further discuss it.
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5. A Numerical Example for the Additive Model

The data presented in Table 1 of an earlier paper (Wang and Lewis,

1973) are used for illustrative purposes here. Again, we choose v
a
= v

0
= 8

and Am
6
- .028 to characterize our prior distributions. There are

25(=m) persons, 5(=t) related tests and each test consists of 8(=n) items.

As indicated in Sections 1 and 2, we feel that it is not far-fetched

to assume an additive model for the analysis of these data.

The posterior marginal means and standard deviations of yij given g

obtained from the procedures described in Section 4.1 are given in Table 2

(the figures enclosed in parentheses are standard deviations). It is

found that both p = .7157 and p
0
,2 .7140 (weights used in computing

marginal mean estimates 411 of yij) are larger than 6.14 = .5444 and

ws = .6637 (the corresponding weights for obtaining the estimates yij of

y
ij

based on posterior joint modes of 2, a, and 0, respectively. From

Equations (2.6b), (2.6c), (3.7b), and (3.8a), we find that marginal mean

estimates of and 0 are accordingly less regressed to their averages

(zero) than the joint modal estimates. The smaller regressions of ai

and 0. in this case result in discrepancies between yij and Yu . The

directions of these discrepancies depend on the signs of estimated person

effect and test effect (which, in turn, are decided by the signs of

gi. g.. and g.i - g..). Specifically, if both gi. g.. and g.i g..

are positive (or negative), yij will be larger (or smaller) than yij .

On the other hand, if gi. g.. and g.j - g.. are of opposite signs, their

relative absolute values will decide the direction of the discrepancy and

no general conclusions can be made.

. ,

The estimates Brij of proportions r
ij

based on marginal estimates

y
ij

of y
ij

are presented in Table 3. It is seen that there are sizeable

discrepancies between some Oij (based on "fij) and nij . For instance, the
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estimates of proportion m20, for person 20 on test 3 are ffij = .60; and

#
ij

= .548. To explain this difference, it is noted that g
1

= .784 and

g.j = 1.039 (1 = 20, j = 3) are both smaller than the overall average

g.. = 1.099 in this case. Therefore, the estimated person effect and test

effect are negative. It follows that is considerably smaller than

it because p > w
Ct

and p
0
> w

0
.

In closing, an example of applying the proposed normal approximation

to marginal probabilities is given below. From Table 2, we find

31.4) = .831 and Nar(y20. 318)]1/2 = .0739 for person 20 on test 3.0'120,

Suppose we are interested in a criterion mastery level no 10 .70. Following

explanations in Section 4.1.3, we obtain

prob020,
3 > .70)

= 1 - prob(y20, < .991)

* 1 - prob(z < 2.165)

= .0152

-11-- TA 4;(74416) .991 -- .831

Oro = sin rn
o
= .991 and = 2.165).

[Var(y 10 .0739111

Both the estimates it
ij

= .548 and #
1j

= .608 are less than .70 and the

posterior probability that n20. is greater than .70 is very small.

Thus, for most reasonable loss ratios, the action would be to retain

this student in the old unit of instruction. Fer reference, approximate

posterior probabilities of wij > .70 given s are preiedted in Table 4.

In this table, we find for person 2, prob('r21 > 470Ig) 4 .666. Thus, we

may decide to advance him on the basis of a loss ratio 2/1. Inspections of

370,
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Table 1 and 3 tell us both f
21

= .761 and u21 = .742 are above the

criterion .70. As another example, welind, for person 23 on test 4,

23 , 4
both i

23, 4
= .737 and i = .712 are above .70. But we have

prob(x23, > .70I) : .494 as given in Table 4. Therefore, we would

advance him if the i'ss ratio is about 1 while retain him for any

loss ratio greater than 1.
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Table 1

Estimates of Proportions with an Additive Model

Au = AB = .028 v = v
0
= 8

Test

Subject 1 2 3 4 5
J

1 .844 .851 .801 .836 .842

2 .761 .770 .713 .752 .759

3 .887 .894 .849 .880 .886

4 -;747 .756 .698 .738 .745

5 .820 .828 .776 .812 .819

6 .749 .758 .700 .740 .747

7 .906 .913 .870 .900 .905

8 .810 .818 .765 .802 .808

9 .844 .851 .801 .836 .842

10 .855 .862 .813 .847 .853

11 .856 .863 .814 .848 .854

12 .906 .913 .870 .900 .905

13 .940 .946 .908 .935 .939

14 .896 .902 .858 .889 .894

15 .833 .841 .789 .825 .831

16 .772 .781 .725 .764 .770

17 .749 .758 .700 .740 .747

18 .701 .710 .650 .692 .699

19 .674 .683 .b22 .664 .671

20 .660 .669 .608 .650 .658

21 .885 .892 .846 .878 .883

22 .856 .863 .814 .848 .854

23 J .746 .755 .697 .737 .744

24 .786 .795 .740 .778 .784

25 .914 .920 .878 .908 .913

E(81. E..)
2

,ff .68782, E(g.i - g..)2 = .00495

is m .00703, .60 = .00232, wa m .5444, and coo = .6637
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Table 2

Posterior Marginal Means and Standard Deviations of Gammas

Subject

Test

32

1 2 3 4 5

1 1.146(.0704) 1.157(.0705) 1.092(.0706) 1.136(.0704) 1.144(.0704)

2 1.021(.0709) 1.032(.0709) .967(.0711) 1.011(.0709) 1.019(.0709)

3 1.221(.0712) 1.231(.0712) 1.167(0714) 1.211(.0712) 1.219(.0712)

4 11.002(.0712) 1.012(.0712) .947(.0713) .992(.0712) .999(.0712)

5 1.110(.0704) 1.120(.0704) 1.055(.0705) 1.100(.0703) 1.107(.0704)

6 11.004(.0711) 1.015(.0712) .950(.0713) .994(.0711) 1.002(.0711)

7 1.256(.0718) 1.266(.0718) 1.202(.0720) 1.246(.0718) 1.254(.0718)

8 1.094(.0704) 1.104(.0704) 1.040(.0706) 1.084(.0704) 1.092(.0704)

9 11.146(.0704) 1.157(.0705) 1.092(.0706) 1.136(.0704) 1.144(.0704)

10 1.164(.0706) 1.175(.0706) 1.111(.0707) 1.154(.0705) 1.162(.0706)

1.166(.0706) 1.176(.0706) 1.112(.0707) 1.156(.0706) 1.164(.0706)

12 1.256(.0718) 1.266(.0710 1.202(.0720) 1.246(.0718) 1.254(.0718)

13 1.326(.0735) 1.337(.0735) 1.272(.0736) 1.316(.0735) 1.324(.0735)

14 1.236(.0714) 1,247(.0715) 1.182(.0716) 1.226(.0714) 1.234(.0714)

3.5 1.129(.0704) 1.140(.0704) 1.075(.0706) 1.119(.0704) 1`.127(.0704)

16 1.038(.0707) 1 048(.0708) .983(,0709) 1.028(.0707) 1.035(.0707)

17 1.004(.0711) 1.015(.0712) .950(.0713) .994(.0711) 1.002(.0711)

18 .939(.0723) .949(.0724) .885(.0725) .929(.0723) .937(.0723)

19 .903(.0732) .913(.0733) .849(.0734) .893(.0732) .901(.0732)

20 .885(.0738) .895(.0738) .831(.0739) .875(.0738) .883(.0737)

21 1.217(.0711) 1,227(.0711) 1.162(.0713) 1.207(.0711) 1.214(.0711)

22 1.166(.0706) 1.176(.0706) 1.112(.0707) 1.156(.0706) 1.164(.0706)

23 1.001(.0712) 1.011(.012) .966(,0713) .991(.0712) .998(.0712)

24 1.058(.0705) 1,069(.0706.1 1.004(.0707) 1.048(.0705) 1.056(.0705)

25 1.272(.0721) 1.282(.0723) 1.217(.0723) 1.262(.0721) 1.269(.0721)
11111=.

Standard deviations are given in parentheses. Prior Specifications:

as = X = .028, v
*

= v = 8; Sample Statistiri, g..)
2
= .68782,

13

E: (g.
2
= .00495; 0

e
= 4: R = .7157, pi = g R = .7140,

00 a 0

Var R = .00492, dud Var R4 = .00712.

4 0 "
0
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Table 3

Posterior Marginal Estiwates of Proportions Based on

33

1

Test

Subject 1 2 3 4 5

1 .851 .859 .806 .843 .849

2 .742 .751 .689 .732 .739

3 .907 .913 .867 .900 .905

4 .723 .733 .669 .713. .721

5 .821 .829 .773 .812 .819

6 .725 .735 .672 .716 .723

7 .930 .936 .893 .923 .928

8 .808 .816 .759 .799 .806

9 .851 .859 .806 .843 .849

10 .865 .873 .821 .858 .864

11 .867 .874 .823 .859 .865

12 .930 .936 .893 .923 .928

13 .969 .974 .939 .964 .968

14 .917 .924 -.879 .910 .915

15 .837 .846 .791 .829 .835

16 .757 .766 .705 .747 .755

17 .726 .735 .672 .716 .723

18 .661 .671 .605 .650 .658

19 .624 .634 .567
.

.613 .621

20 .605 .616 ,548 .595 .603

21 .904 .911 .864 .897 .902

22 .867 .874 .823 .859 .865

23 .722 .732 .663 .712 .720

24 .776 .785 .724 .767 .774

25 .939 .945 .904 .933 .938

Prior Specifications: as = AO = .028, \I* ti vo = 2
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Table 4

Approximate Posterior Probabilities of sii > .70

Test

Subject 1 2 3 4 5

1 .986 .991 .924 .980 .985

2 .666 .716 .368 .613 .654

3 .999 1.000 .993 .999 .999

4 .559 .615 .270 .503 .546

5 .354 .966 .818 .938 .951

6 .574 .629 .282 .518 .561

7 1.000 1.000 .999 1.000 1.000

8 .928 .946 .755 .907 .924

9 .986 .991 .924 .980 .985

10 .993 .995 .954 .990 .992

11 .993 .996 .956 .990 .993

12 1.000 1.000 1.000 1.000 1.000

13 1.000 1.000 1.000 1.000 1.000

14 1.000 1.000 .996 1.000 1.000

15 .975 .982 .883 .966 .973

16 .744 .789 .456 .697 .734

17 .574 .629 .282 .518 .561
.

18 .235 .281 .071 .195 .225

19 .114 .144 .026 .090 .108

20 .075 .097 .015 .058 .071

21 .999 1.000 .992 .999 .999

22 .993 .996 .956 .990 .993

23 .554 .610 .266 .498 .541

24 .829 .864 .572 .791 .821

25 1.000 1.000 .999 1.000 1.000
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Interdialect Translatability of the

BASIC Programming Language

by

Gerald L. Isaacs

The American College Testing Program

Introduction

The BASIC (Beginner's All-purpose Symbolic Instruction Code)

programming language is a mathematically-based conversational problem-

solving language. It has wide application in business, scientific,

and educational environments. It is powerful, efficient, flexible,

and has the precision necessary for most tasks. Also, its syntax

is simple and easy to learn. The BASIC programming language is simple

enough so that an inexperienced programmer can use it and has enough

rower and flexibility so that the experienced programmer can write

his programs efficiently BASIC was first developed under Professors

John G. Kemeny and Thomas E. Kurtz at Dartmouth College in 1963-1964.

Since then, BASIC has been transformed into more than forty different

major dialects. Each 'of these transformations has added to or

modified the original lan.uage.

Due to the many differences among dialects of BASIC, unless care is

taken in the initial programming it is both time consuming and difficult

to readily translate a program from one dialect to another. However,

if a few rules are followed, it may be possible to translate within a

large set of dialects with a minimum of effort. In this paper we

investigate this possiblity in some detail.

The research reported herein was performed pursuant to Grant No.
OEG-0-72-0711 with the Office of Education, U. S. Department of Health,
Education, and Welfare, Melvin R. Novick, Principal Investigator.

Contractors undertaking such projects under Government sponsorship are
encouraged to exprebs freely their professional judgment in the conduct

of the project. Points of view or opinions stated do not, therefore,
necessarily represent` official Office of Education position or policy.
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The specific purpose of this ctudy is to identify and investigate

in detail those BASIC dialects that would form a set in which

translatability would be high if reasonable programming restrictions

are imposed. Only BASIC dialects that are interactive have been

studied. The following BASIC dialects are examined in this study.

BASIC FOUR BUSIgESS BASIC

BURROUGHS 2500 BASIC

BURROUGHS 5500 BASIC

BURROUGHS 3500 BASIC

BURROUGHS 6700 EASIC (University of California San Diego)

CDC 6600 KRONOS/BASIC

CDC 6600 SCOPE/BASIC

COM-SHARE BASIC

COM- SIIARE NEWBASIC

DARTMOUTH BASIC (sixth version)

DATA GENERAL EXTENDED BASIC

DEC PDP /8 BASIC (EDUSYSTEM 25 and 50)

DEC PDP/10 BASIC

DEC PDP/11 BASIC

GE MARK I BASIC

GE MARY II and GE MARK III BASIC

GE 255 LIME-SHARING BASIC

GENERAL AUTOMATION ADVANCED BASIC-16

HONEYWELL 200 BASIC

UONEYWELL 400 XBASIC

HONEYWELL 316, 516, and 716 BASIC

HONEYWELL 600 DASIC

HONEYWELL 1640 UAW.

HP 2000B BASIC
3 8 2
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HP 2000C BASIC

HP 2000E BASIC

HP 2000P BASIC

HP 3000 BASIC

IBM CPS/BASIC (University of Iowa)

IBM ITF/BASIC

IBM CALL /360 -OS BASIC

IBM S3 MOD 6 BASIC

LEASCO BASIC

MICRODATA BASIC

MULTICOMP BASICX

NCR CENTURY 100 BASIC 1

NCR CENTURY 200 BASIC

Q-DATA BASIC 1

UNICOMP/COMP 16 or COMP 18 BASIC

UNIVAC 1100 UBASIC

UNIVAC 1100 UBASIC VERSION 2.0 (Mankato State)

UNIVAC 1100 (University of Maryland Release 1.3)

VARIAN 620 or V73 BASIC

WANG 2200 BASIC

WANG 3300 BASIC

WESTINGHOUSE BASIC II

WESTINGHOUSE BASIC III

XEROX BASIC

Due to the complexity and needs of our applications, we are mainly

interested at this time in a multiuser system supporting a form of mass

storage. Therefore, many single user systems or small systems such as the
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PDP-8 EDUSYSTEM 5, 10, 20 have not been presented. However, most of

the techniques discussed here also apply to many of the smaller systems.

Some of the dialects are immediately transportable from one computer

in a manufacturer's line to another, e.g., the XEROX BASIC runs on the

Sigma 5, 6, 7, 8, and 9. Also, several )ASIC dialects are upward

compatible on computers in the same line, e.g., the BASIC dialect on

the Hewlett Packard 2000B will run on the 200C, 2000E, and 2COOF. For

most dialects, some translation must be done if a program written in the

BASIC of one computer is to be run on a second computer. This study

was motivated by the desire to produce readily translatable conversational

language interactive programs for computer-assisted data analysis and

decision making in an educational environment. The conclusions of the

study will, however, apply quite generally since the aforementioned

applications are very demanding in terms of text handling capability,

computational power, and formatting.

Important Programming Capabilities

There are four programming capabilities that should be present if a

project of any magnitude or complexity is to be undertaken. The first

of these is computational ability and precision. Of the more than forty-

five dialects examined, all were found to provide at least six digits of

accuracy and to support the basic arithmetic operations plus exponentiation.

Some dialects provided accuracy of up to 15 or 16 digits. Obviously,

dialects with only six digit accuracy will not be useful in many

scientific applications, Also there was a large iariance as to the

largest and smallest absolute number allowed. The smallest maximum

absolute number was approximately 10
37

while the largest minimum number

was approximately 10
37

except for the Westinghouse and General Automation
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BASICS which allowed approximately 10
19

and 10
-20.

For a translatable

system, the questions of accuracy and precision will need to be considered

carefully. A system can only be translated to dialects that provide

the needed accuracy.

A second necessary capability of any dialect is that it has
A

the ability to execute a program of the desired size. This may be

accomplished in several ways. One method involves mass partition size.

That is, a user is allowed as large a partition as is necessary for his

task and is swapped in and out of core with many other users. This method

may substantially add to cost and execution time. Further, when this

method is used, a system that uses a monitor to sequentially execute

several programs is not very feasible, since all the programs and the

monitor must remain in core. In these circumstances, the user would

load and execute each program independently. Such a procedure results

in a tolerable inconvenience.

A second method that is used by many dialects is program chaining.

This method allows the user to fit a very large program into a small

partition by dividing the program into small segments and executing them

separately in logical succession. There are two kinds of program chaining.

The first calls for a complete overlay of the program in core, and the

second, a chaining in which the user may specify where the overlay may

begin.

The third method for accomplishing the execution of a large program

is through the use of external subroutine calls. In this procedure, the

user calls a subroutine that is maintained as a separate flle. After it

is executed, its core is releaied thus allowing additional portions of

the program to be called into core without destroying existing code.

There arE some BASIC dialects such as IBM-CPS-BASIC, Na-CENTURY-100-BASIC 1,
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MICRODATA-BASIC, Q-DATA-BASIC-1, UNICOMP-BASIC, VARIAN-BASIC,

and WESTINGHOUSE-BASIC-II which only allow a fixed area of core

and do not permit the user any of the above options for increasing the

size of the program to be executed. These dialects are inadequate for

most complicated systems.

The third capability that a BASIC dialect should have is the means

for accessing and creating external data files. Three levels of file

capability are supported by the various BASIC dialects. One group of

dialects offer no data file support, e.g., IBM-CPS-BASIC (MTV of IOWA),

WESTINGHOUSE-BASIC-II and III, GENERAL AUTOMATION-BASIC, HONEYWELL-316,

516, and 716 BASICS, MICRODATA-BASIC, Q-DATA-BASIC, BURROUGHS-2500 and

3500-BASICS, UNICOMP-BASIC, VARIAN-BASIC, COM-SHARE-BASIC, UNIVAC-I100-

BASIC (UNIVERSITY OF MARYLAND V. 1.3), and NCR-CENTURY-100-BASIC-1.

Presently, the NCR-CENTURY-200-BASIC has no file capability although it

is promised in the near future. A second group of dialects supports only

sequentially accessed data files. The latter group includes IMB-ITF-

BASIC, IBM-S3-MOD-6-BASIC, CE-255-TIME-SHARING-EXTENDED-BASIC, HONEYWELL-

1640-BASIC, WANG-3300 and 2200-BASICS, IBM-CALL/OS-BASIC, CDC-6000

KRONOS-BASIC, UCSD-B6700-BASIC, CDC-6000-SCOPE-BASIC, BURROUGHS-B5500-

BASIC, DEC-PDP-8-BASIC (EDUSYSTEM 25 and 50), and UNIVAC-1100-UBASIC

(MANKATO STATE VERSION 2.0). i third group of dialects supports both

sequential access and random access files. Members of this group are

flP2000E-2000E-2000C-2000B-BASIC, UNIVAC-1100UBASIC, HP3000-BASIC,

MULTICOMP-BASTe.X, BASIC-FOUR-BUSINESS-BASIC, XDS-BASIC, GE-MARK-I,

MARK-II, AND MARK-III-BASICS, LEASCO-RESPONSE-I-BASIC, DARTMOUTH-BASIL,

COM-SHARE-BASIC and NEWBASIC, DEC-PDP-10 and PDP-11-BASIC, HONEYWELL-

200, 400, and 600-BASICS, and DA'T'A-GENERALBLSIC. The urgency of the

need for random access files varies with the CppliCation. HOWOVVI. '.10VV
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some type of file support is needed for nearly all applications, a

minimum of sequential access to files is almost a must.

External files are used to store data that are too complicated and

time consuming to recompute every time they are needed. Files also are

needed to pass data between chained segments of a system; if the whole

partition is overlayed. Also, files can be used to store results of

computations so that the user may decrease the size of his program. Yn

view of this, the BASIC dialects mentioned in the second and third

groups of the previous paragraph are more adequate than the dialects in

the first group.

A fourth important capability for a BASIC dialect is its

conduciveness to generating formatted output. This is accomplished by

means of the PRINT USING statement. This statement allows the user to

determine what his output is going to look like. He may specify the

number of digits to be outputted, the mode of output, and the column(s)

in which the output is to appear. Also, the user may specify carriage

control, e.g., number of spaces between lines. Most of these may also

be accomplished using a PRINT statement. This is much less efficient,

requires more programming, and cannot be accomplished in the case of

specifying the number of digits. The PRINT USING statement has different

syntax in almost every dialect. Therefore, it should be noted that if

the PRINT USING is used, it must be modified when translating from one

dialect to another. In some dialects the format to be followed is

specified in the PRINT USING statement itself, while in others the

format is in an IMAGE, FIELD, or format statement. Some dialects uee

Fortran format for output, e.g., MULTICONP-BASICX. Others use an

example output line with special characters denoting numeric output.
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Not all systems have formatted output, e.g., 11152000B-BASIC,

HP2000E BASIC, NCR-CENTURY-200-BASIC, CDC' -6000 -SCOPE and KRONOS-BASICS,

and UNIVAC-1100-BASIC (UNIVERSITY OF MARYLAND). It is felt that a

system should have a capability for formatted output. However, if it

does not, the PRINT statement can provide many of the features of the

PRINT USING command. Although the results may not be usually as

appealing as with the PRINT USING statement, they provide a satisfactory

alternative.

The translation of most statements in a BASIC dialect will be

trivial or no translation will be necessary. Operands, relations,

names, strings, arrays, functions, input, and branching can be translated

with little effort or time. The three difficulties that will be

encountered are file handling, chaining or subroutine calling, and

output formatting. Since there is no exact standard for these areas,

a knowledge of the statement formats in these areas can help to

minimize the expenditure of time and energy.

Comparison of Elements

Operations and Relations:

All BASIC dialects use the same symbols for addition 4, subtraction -,

multiplication *, and division 1. However, there is no standard operator

for exponentiation. Different dialects use the following symbols:

**, f, " . The most frequent symbol used for exponentiation is t

If exponentiation can be avoided, translatability in operands is

achieved. The string operation of concatenation is not implemented on

all dialects. For those in which it is implemented, ampersand ( &),

plus (*), comma (,), STR, or CATS are used. A few of the dialects such
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as BASIC-FOUR, VARIAN, COM-SHARE-NEWBASIC, HP2000B, HP2000C, HP2000E,

HP2000F, HP3000, PDP -ll, LEASCO, WANG-5300, WESTINGHOUSE, GENERAL-

AUI0MATION, and the UNIVAC-1100 implement the logical operands of

AND, OR, and NOT. The PDP-11, COM-SHARE-NEWBASIC, and UNIVAC-1160

BASIC dialects also support logical equivalence (EQV, EQU, and EQU,

respectively), exclusive or (EOR, XOR, and XOR, respectively), and

implication (IMP). GENERAL-AUTOMATION also supports exclusive or (XOR).

The logical relations symbols for less than ( <), greater than ( >),

not equal (<>), less than or equal (<=), and equal (20 are standard

across all the BASIC dialects except for the UNIVAC-1100-UBASIC

(VERSION 2.0 MANKATO STATE COLLEGE) dialect which uses LSS for less

than, GRT for greater than, NEQ for not equal, LEQ for less than or

equal, and EQU for equal, and MICRODATA which uses # for not equal.

The logical relation greater than or equal (>=) is standard across all

BASIC dialects except for the UNIVAC-1100 (VERSION 2.0 MANKATO STATE

COLLEGE) and HONEYWELL-200-BASIC dialects which use the symbols Gal

and =>, respectively.

Names:

In the BASIC programming language, there can be up to five types

of variable names. These are array variable names, numeric variable

names, string variable names, integer variable names, and user defined

function names. A numeric variable name should be either a letter or

a letter followed by a single digit. While the IBM-BASIC dialects

allow the special characters of $, @, and # to be used anywhere a letter

may be used, and IBM-CPS-BASIC allows a single letter or a letter

followed by another letter or a number, for reabons of translatability

these conventions should not be used. String variables are used in
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all BASIC dialects except NCRr.CENTURY-100-BASIC-1, BURROUGHS-2500

and 3500-BASICS, UNICOMF-BASIC, VARIAN-BASIC, WESTINGHOUSE-BASIC-I1,

HONEYWELL-316, 516, and 716-BASICS, MICRODATA-BASIC, and Q-DATA

BASIC-1.

There are two conventions used for string variable names. The

first is a letter followed by a $. The second is a numeric name

followed by a $. For translatability the first convention, a letter

followed by a $, should be used. Integer variable names are only

allowed in the PDP-li -BASIC and HP3000-BASIC and should be avoided.

Array variable names should be confined to a single letter that hag

not been used elsewhere. Some dialects allow any numeric name to be

an array name and allow the same name to be both an array variable name

and a numeric variable name. In the interest of translatability,

array variable names should be confined to a single unique letter.

User defined function names are standard in all BASIC dialects except

the NCR-200-BASIC, UNICOMF-BASIC and 1W-11-BASIC. There are no user

defined functions in the NCR-20 and UNICOMP -BASIC dialects. The

1W-11-BASIC allows the user defined function to be FN followed by any

numeric variable name. All other BASIC dialects limit a user defined

function to FN followed by a single letter. The general convention of

FN letter should be used.

Strings:

All BASIC dialects for the UNICOMP- BASIC, BURROUGHS-2500 and '3500-

BASICS, VARIAN-BASIC, WESTINGHOUSE-BASIC-II, HON1YWELL-316, 516, and

716-BASICS, MICRODATA-BASIC, Q-DATA-BASIC-1, and NCR-CENTURY-100-BAS1( 1

have string handling capabilities. However, these dialects still allow

strings in PRINT statements. String constants are enclosed in quoter..
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In all BASIC dialects except IBM-CPS-BASIC, IBM-S3-MOD-6-BASIC,

UNIVAC-1100-UBASIC (VERSION 2.0 MANKATO STATE), and XDS-BASIC,

double quotes (") may be used. In the exceptions, single quotes

(I) are used. Therefore, if translation is to take place between

dialects that use the different types of string quotes, a user must

be sure to change all the quotes. Strings vary in length in the BASIC

dialects. The shortest string length is 6 characters and the longest

string length is over 37,000 characters. There are two groups of

dialects, toose that allow a maximum of 6 to 22 characters and those

that allow string length greater than or equal to 72. The 4ialects

that provide a string length less than or equal to 22 characters are

DEC-PDP-8-BASIC (EDUSYSTEM 25 and 50), BURROUGHS-B5500-BASIC, IBM-CPS-

BASIC, IBM-S3-MOD-6-BASIC, WANG-3300-BASIC, IBM-ITF-BASIC, XDS-BASIC,

IBM-CALL/360-0S-BASIC, HONEYWELL-200-BASIC, GE-255-TIME-SHARING-BASIC,

GE-MARK-I-BASIC, NCR-CENTURY-200-BASIC, and UCSD-B6700-BASIC. Several

of the BASIC dialects provide string processing functions from which

substrings, positions, lengths, and other data may be obtained. It

should be noted that these functions are not translatable and should

not be used if the system is to be translated. If string handling is not

needed, then all BASIC dialects can be considered. But if a long string

(greater than 22) is needed, then translatability is limited.

Arrays:

All BASIC dialects allow use of arrays to store data. An array

may have, at most, two dimensions in all BASIC dialects except CDC-

6600-SCOPE-BASIC, BASIC-FOUR-BUSINESS-BASIC, VARIAN-BASIC, CDC-6600-

KRONOS-BASIC and the HONEYWELL-200-BASIC, which allow three dimensions,

UNIVAC-1100-BASIC which allows four dimensions, and COM-SHARE-NEWBASIC,
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WESTINGHOUSE-BASIC, GENERJL-AUTOMATION-BASIC, and HONEYWELL-400, 316,

516, and 716 - BASICS which allow as many dimensions as will fit in one

statement. All BASIC dialects have some limit on the number of elements.

In IBM-CPS-BASIC the limit is 500 elements per array. But in most BASIC

dialects it is limited only by the amount of Lore that is available.

Arrays that do not appear in a dimension (DIM) statement arc dimensioned

ten, or ten by ten, or ten by ten by ten dependir:1 upon use and system,

in all dialects except PDP-8-BASIC (EDUSYSTEM 25 and 50), BASIC-FOUR-

BUSINESS-BASIC, GENERAL-AUTOMATION-BASIC, WANG-3300 and 2200-BASICS, and

NCR-CENTURY-200-BASIC. Therefore, all arrays shoild be dimensioned for

translatability. Depending upon the dialect,.arrays start at zero or

one. But in matrix (MAT) operations, the zero,elements aye ignored

anyway. All BASIC dialects have the MAT operations addition, subtraction,

scaler multiplication, multiplication, transposition, and inversion

except the PDP -8 -BASIC (EDUSYSTEN 25 and 50), NCR-CENTURY-200-BASIC,

NCR - CENTURY- 100 - BASIC -1, BASIC-FOUR-BUSINESS-BASIC, UNICOMP-BAS1C,

WESTINGHOUSE-BASIC-II, HONEYWELL-316, 516, and 716-BASICS, MICROI)ATA-

BASIC, Q-DATA-BASIC, WANG -2200- BASIC, and UCSD-B6700-BASIC which do not

support MAT operations. Also, there is an identity matrix (ION),

matrix of all ones (CON) and a zero matrix (ZER) in all dialects that

have the MAT commands. All dialects that support the NAT commands also,

support a form of matrix input and output. In addition, some Aupport

a file input and output for matrices. Whether an array is translatable

or not depends upon several factors, including program size and partition

size. The PDP-11-BASIC, HONEYWELL-400-BASIC, and COM-SHARr-BASIC allow

arrays to reside on disc in what is called their virtual storage.

these are the only dialects that support a feature like this.
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Complex Variables:

Only the HP3000-BASIC and COM-SHARE-NEWBAbIC dialects allow the

use of complex variables. Therefore, this capability should be avoided.

Functions:

BASIC functions are divided into two types. The first type includes

all functions permanently resident in the system. All BASIC dialects

support the following system functions:

ABS Absolute value (except UNICOMP-BASIC)

ATN Arctangent (except WESTINGHOUSE-BASIC-II and BASIC-FOUR;

and BURROUGHS-2500 and 3500 and COM-SHARE-NEWBASIC which

use ATAN)

COS Cosine (except WESTINGHOUSE-BASIC-II and BASIC-FOUR)

EXP Exponentiation (except BASIC-FOUR-BASIC)

INT Largest integer (except UNICOMP-BASIC)

LOG Common logarithm (except BASIC-FOUR-BASIC)

RND Randomization (except WESTINGHOUSE-BASIC-II, UNICOMP-BASIC,

and BASIC-FOUR-BASIC; and COM-SNARE-NEWBASIC which uses num)

SGN Sign (except UNICOMP-BASIC

SIN Sine (except WESTINGHOUSE-BASIC-II and BASIC-FOUR-BUSINESS-

BASIC)

SQR Square root (except BASIC-FOUR-BUSINESS-BASIC and WESTINGHOUSE-

BASIC-II)

TAN Tangent (except IBM-CPS-BASIC (UNIVERSITY of IOWA), UNICOMP-

BASIC, BASIC - FOUR - BUSINESS -BASIC, and WESTINGHOUSE-BASIC-II)

The preceding system functions can be used freely unless in one of

the exception dialects. The various dialects also support many other

functions that should be avoided.
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The second type of function is a user defined function. These

functions pass one or several arguments depending on the dialect. Also,

some dialects allow multiple line definitions. To be truly translatable,

only single line definitions that pass at most one variable should be

used. All BASIC dialects allow user defined functions except for NCR-

CENTURY-200-BASIC and UNICONP-BASIC.

Branching:

There are four types of statements used in BASIC for branching

purposes. The first type of branching statement is the FOR statement.

This loops control between the FOR statement and its corresponding

NEXT statement until a counter reaches a limit. The format that is

used in all BASIC dialects is:

FOR variable = initial value TO limit STEP increment.

NEXT variable

Initial value, increment and limit may be any expression in all BASIC

dialects except BASIC-FOUR-BUSINESS-BASIC, and CON-SHARE-BASIC. In

COM-SHARE-BASIC limit must be a number and in BASIC-FOUR-BUSINESS-BASK

initial value, increment and limit may be variables. In all BASIC

dialects the loop works in the following manner:

1) The variable is set equal to the initial value.

2) Test if variable is searched or passed the limit.

a) Execute loop if limit has not been reached.

b) Exit loop if limit has been reached.

3) Add increment to variable.

4) Go back to step 2.
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In all BASIC dialects loops may be nested, but maximum nesting permitted

varies between dialects. If the user picks five as the deepest loops

can be nested, then the system should be translatable.

The second type of branching statement is tie IF statement. There

are many forms of the IF statement in the BASIC dialects; but there is

one that holds across all dialects. That is:

IP expression logical operator expression THEN line number..

The third type of branching statement is the GOTO statement. There

are two forms of this statement, the simple GOTO and the computed GOTO.

The computed GOTO is not implemented in all dialects and should be avoided.

The simple GOTO is standard in all dialects as:

GOTO line number.

The word GOTO may also be GO TO in some dialects but it is not clear

from the manuals which is accepted.

The fourth type of branching statement is the GOSUB statement.

Here there are also two forms, the simple GOSUB and the computed GOSUB.

The computed GOSUB is not universal and should be avoided. The simple

GOSUB has the following syntax

GOSUB line number.

This form is standard across all BASIC dialects.

Therefore, if the preceding forms of the branching statements are

used, the users' system will be translatable in .terms of branching.

Input:

In the BASIC programming dialect there are two methods for accepting

input. The first method is the READ-DATA statement pair. Those two

statements are completely translatable across all BASIC dialects except

BASIC-FOUR-BUSINESS-BASIC which does not allow READ-DATA pairs. The form

of these two statements is:
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READ var 1, var 2, ... var n

DATA constant, constant, ... constant.

The only restriction is that in the NCR-CENTURY-100-BASIC-1, BURROUG1lS-

2500 and 3500-BASICS, COM-SHARE-BASIC, WESTINGHOUSE-BASIC-II, HONEYWELL-

315, 516, and 716-BASICS, MICRODATA-BASIC, and Q-DATA-BASIC do not allow

string variables or constants in the READ or DATA statements. The next

read position in the data list can be reset to the beginning using the

RESTORE command in all BASIC dialects except DARTMOUTH-BASIC which uses

the RESET statement and UNICOMP-BASIC which has tic prevision for starting

over in a DATA statement.

The second method for accepting input is via the INPUT statement.

In BASIC the INPUT statement accepts input from the user's terminal. The

INPUT statement has the following syntax:

INPUT var 1, var 2, ... var n.

This syntax is constant over all BASIC dialects for this statement, although

the same dialects that do not allow strings in READ-DATA pairs do not allow

strings here. Thus, these statements are easily translatable.

Files:

The least translatable of all the statements are the file handling

statements. Different dialects have different methods for h.indling files.

In some dialects the user allocates a file name with a FILE statement., a

FILES statement or an ASSIGN statement depending upon the dialecz. Other

dialects implicitly do this in the OPEN statement or first access =.

Backspacing and rewinding of files ate allowed in a few dialects. Some

dialects read from files with an INPUT statement while others use a

READ statement. Also, PRINT and WRITE statements are used for writing

into files in different dialects. Some dialects sense for end of file
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with an IF END statement, others use a NODATA statement, while others use

an ENDER-. statement. File names are determined from dialect to dialect

and even from installation to installation within a dialect. Therefore,

file handling is not directly translatable and the program writer should

attend carefully to file input and file output statements when designing

translatable programs.

Miscellaneous:

There are several aspects of BASIC that do not fall into any of

the above categories. The first of these is the range on line numbers

across the different dialects. The maximum range found was from 0 to

99999999. However, all dialects except IBM -CPS -BASIC and the PDP-8-BASIC

accept line numbers from 1 to 9999. IBM-CPS-BASIC has a range from 1

to 999 and PAP -8 -BASIC (EDUSYSTD 25 and 50) has a range from 1 to 2046.

Therefore, ene sbould use line numbers only from 1 to 9999 for

translatability. Unless either of the two above exceptions are to be used.

Another feature is comments or remarks; these can be fully trans-

latable if the syntax is:

REM message.

Some dialects zero all variables before they are used, but this

should not be taken for granted across all the dialects.

Also, certain dialects such as PDP-11-BASIC, COM-SHARE-NEWBASIC,

HONEYWELL-316, 516, 716, and 600-BASICS, HP3000-BASIC, WANG-3300, and

2200 - BASICS, and the HONEYWELL-200-BASIC allow multiple statements on

a single line. This feature should not be used

The keyword LET should not be dropped from assignment statements

since many of the dialects require it. Also, only one variable should

be assigned at a time even though many dialects allow multiple assignments.

The format appears as
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LET var = expression.

The following three statements:

STOP

END

RETURN

are completely translatable when used in the above cyntax. Some dialects

allow a comment to fcllow. This should be avoided for reasons of trans-

latability.

Summary of Rules for Translatability

1) Avoid the use of exponentiation if possible or use t in all

dialects where it is permitted.

2) Do not use logical arithmetic (OR, AND, NOT, etc.).

3) Use the following logical relations: 4, >, 4>, =, <=, and

>= whenever permitted.

4) Use a single letter or a letter followed by a number for a

numeric variable name.

5) Use a single letter followed by a $ for string variable namec..

6) Use a unique letter for an array variable name.

7) Use FN followed by a single letter for a user defined function

name.

8) Use double quotes (") whenever possible.

9) Decide on what length strings are going to be allowed and

translate your system within the group your string length

specifies.

10) Avoid string handling system functions.

11) Use at most two dimension arrays.

12) Start arrays at I.

13) Take advantage of the MAT command where applicable.
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14) Only the system functions listed should be used.

15) Use only single line user defined functions.

16) Nest loops at most five deep.

17) Limit the following statements to the listed format.

FOR variable = variable TO expression STEP expression

NEXT variable

IF expression-operator-expression THEN line number

GOTO line #

GOSUB line #

READ var 1, ...

DATA constant 1, ...

INPUT var 1, ...

STOP

END

RETURN

RESTORE

REM message

LET var = expression

18) Do not use multiple statements on asingle line.

19) Line numbers should run from 1 to 9999.

20) Do not expect the system to zero all variables.

21) Avoid integer and complex variables.

Translatable LASIC Dialects

Most of the problems in translating one dialect to another are a

matter of changing a keyword or format. These changes can be made to

the whole program at one time using the edit features of the system.

There are two features that must be changed or at least checked very
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closely. These are the file handling and formatted output capabilities.

These are not difficult changes to make, but must be considered care-

fully.

It was found that the dialects studied fell into three categories.

The first of these categories contains those dialects that are missing

a critical element. These are:

BURROUGHS-2500-BASIC (no data file capability, no capacity for

chaining etc.)

BURROUGHS-3500-BASIC (no data file capability, no capacity for

chaining etc.)

COM-SHARE-BASIC (manual chaining only)

GENERAL-AUTOMATION-BASIC (no data file capability)

HONEYWELL-316, 516, and 716 - BASICS (chain only FORTRAN or

ASSEMBLER routines)

IBM-CPS-BASIC (UNIV OF IOWA) (no data file capability, no capaeIty

for chaining etc.)

M1CRODATA- BASIC (no data file capability, no capacity for

chaining etc.)

NCR - CENTURY' -100 -BASIC (no data file capability, no capacity for

chaining etc.)

NCR-CENTURY-200-BASIC (no data file capability at this time)

Q-DATA-BASIC (no data file capability, no capacity for chaining etc.)

UNICO1fl' -BASIC (no data file capability, no capacity for chaining etc.)

UNIVAC-1100 (UNIV OF MARYLAND VERStON 1.3) (no data file capability)

VARIAN-BASIC (no data file capability)

WESTINGHOUSE-BASIC-II (no data file capability, no eapacity for

chaining etc.)

WESTINGHOUSE-BASIC-III (no data file capability)
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The second category contains those dialects that only do not have

formatted output capability.

BASIC -FOUR BUSINESS -BASIC

BURROUGHS-5500-BASIC

DEC-PDP-8-BASIC (EDUSYSTEM 25 and 50)

GE-255-TIME-SHARING-BASIC

HP2000B-BASIC

HP2000E-BASIC

UCSD-86700-BASIC (UNIVERSITY OF CALIFORNIA, SAN DIEGO)

UNIVAC-1100-UBASIC (VERSION 2.0 MANKATO STATE COLLEGE)

Also included in this category are those dialects that issue mass

storage in place of chaining or external subroutine capability.

CDC-6600-KRONOS-BASIC (also no formatted output)

CDC-6600-SCOPE-BASIC (also no formatted output)

IBM-CALL/OS-360-BASIC

IBM-ITF-BASIC

The third category contains those dialects which are preferred.

COM-SHARE-NEWBASIC

DATA- GENERAL -BASIC

DARTMOUTH-BASIC

DEC-PDP-10 BASIC

DEC-PDP-11 BASIC

GE- MARK -I- -BASIC

GE-MARK-II-BASIC

GE-MARK-III-BASIC

HONEYWELL-200-BASIC

HONEYWELL-400-XBASIC

HONEYWELL-600-BASIC

HP2000C-BASIC
401
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HP2000E-BASIC

HP3000-BASIC

IBM - S3 -MOD-6 -BASIC

LEASCO-BASIC

HONEYWELL-1640-BASIC

ULTICOMP-BASICX (UNIV OF MASS, AMHERST, CDC-3600)

WANG-3300-BASIC

UNIVAC-1100 -UBASIC

XDX-BASIC

WANG-2200-BASIC

Therefore, following the recommended translatability rules, a user should

be able to obtain a system tnat is translatable with a minimum of effort

and time within the third category and translatable with greater difficulty

and expense in the second category. It should be noted that a program

usually runs at a slower speed on a small machine than on a large machine.

The information provided above is a synopsis of extensive charts

comparing the above dialects. These charts are available from the authoi.

All information was obtained from manufacturers' manuals and is subject to

change. It can clearly be seen that BASIC translatability is a fact and

can be performed easily if a few rules are followed.
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The purpose of this set of tables is to supplement the basic report on Interdialect

Translatability of the BASIC Programming Language (Gerald L. Isaacs, Technical Bulletin No. II,

The American College Testing Program) and to give a quick, clear, concise, updated view of m.Inv

of the BASIC languages as supported on different computer systems. As shown, each system has

irs own set of commands and its own set of capabilities. Preceding the tables is a listing

of the conventions used in the tables, a summary of file capabilities of the various systems

and a list of references. Immediately following are some late arriving materials that could

not conveniently be included in the tables. The summary presented here includes all information

We have been able to gather as of March 9, 1973. We have given the authors of all dialects

surveyed an opportunity to respond to a preliminary draft, and we have workei closely with

those authors who have responded to requests. Nevertheless, we cannot believe that we have

attained 100% accuracy and even if we did that accuracy would soon decay as a result of the

continuing fast pace of improvement now evidencing itself. We should note specifically that

we have not credited various dialects with features that are "promised for delivery in the

near future" or even those which we are told exist but "are not yet documented". For this

reason, we urge any potential user to check with the relevant manufacture before dismissing

from consideration any system that seems attractive. At the same time, we urge manufacturers

to supply us with documentation of improvements so that we can keep our charts up to date.

Gerald L. Isaacs

March 9, 1973



2

The following conventions are used in the tables.

not available

num or n number

var variable

exp expression

arg argument

numlist number list

val list value list

var list variable list

op operator

str string

param parameter



File Capability

BURROUGHS-B2500 none

BURROUGHS-B3500 none

GENERAL AUTOMATION BASIC-16 ADVANCED none

HONEYWELL 316, 516, and 716
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MICRODATA

NCR CENTURY 100

NCR CENTURY 200

Q --DATA BASIC-1

UN/COMP-COMP 16, COMP 18

UNIVAC 1100 (Univ of Maryland)
Version 1.3

WESTINGHOUSE BASIC /I

WESTINGHOUSE BASIC /II

BURROUGHS-B5500

CDC 6000-KRONOS

CDC 6000-SCOPE

DEC-PDP8 (Edusystem 25 and 50)

GE 255 Time Sharing Extended BASIC

HONEYWELL 1640

/BM/CALL/360-0S

IBM//TF

IBM S3 MOD 6

UCSD-B6700

UNIVAC 1100-UBASIC (Mankato State)
Version 2,0

WANG 3300

WANG 2200

none

none

none.

none

no files as of now

none

none

none

none

none

sequential

sequential

sequential

sequential

sequential

sequential

sequential

sequential

sequential

sequential

sequential

sequential

sequential

BASIC 4-BUSINESS BASIC

COM-SHARE BASIC

COMSHARE NEWBAS/C

DARTMOUTH

DATA GENERAL

DEC-PDP 10

DEC-PDP 11

GE MARX I

GE MARK I/

GE MARK III

HONEYWELL 200

HONEYWELL 400

HONEYWELL 600

HP20008

HP2000C

HP2000E

HP2000F

HP3000

LEASCO-RESPONSE I

MULT1COMP BASICX

UNIVAC 1100-UBASIC
Version 3,2

XDS-BASIC

sequential and random access

sequential and random access

sequential and random access

sequential and random access

sequential and random access

sequential and random access

sequential and random accese

sequential and random access

sequential and random access

sequential and random access

sequential and random access

sequential and disc arrays

sequential and random access

sequential and random access

sequential and random access

sequential and random access

sequential and random access

sequential and random access

sequential and random access

sequential and random access

sequential and random access

sequential and random access
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BASIC 2.0
CDC 6600
SCOPE

I BM
CPS

MN OF IOWA DAR1) 4111H DATA GENERAL

GE MARK II

GE HAM: III HP20000 IIP2000C

=MS

ACCURACY" 14 DIGITS 14 DIGITS 6-8 DIGITS 6 DIGITS 9 DIGITS 6-7 DIGITS 6-7 DIGITS

AND -- AND AND

APPROXIMATELY EQUAL

ARRAY NMI;" letter or
letter num

letter or C letter letter letter letter letter

ARRAY STARTING" 1 0 0 0 0 1 1

ASSIGN see FILE see FILES ASSIGN name,
nub, var, mask

BACKSPACE - BACKSPACE 4I exp
BACKSPACES: ev

----- ---

CALL -- - - -- -- CALL "WV:
argl, arg2
call by ref
call by value

argi

0W.. nut,
list

i

CALL routine
nare not
standard

GRIN

I

..........

(VAIN name
SYSIEN
WM: file 'null.
raur2, ...

CHAIN name I CFAIN name

alT:2mc*
MAIN name CHAIN nave,

exp

"Conaaada and elements that tan be used



....
114

ITF
LEAS O PDP 10 POP 11 UNIVAC 1100

IBASICVERSICN 2.0
MANNATOSTATE CIO

INULTIUMP
ORmum%

RAM(

ITROX

ACCESS ACCESS
num, code

----- ---

Kama * * IS DIGITS 7 DIGITS 8 DIGITS IS DIGITS,
dcuble,
erec.sonx

8 DIGITS II DIGITS 16 DIGITS

AND AND AND ANO(expl, exp2)

MR:MD.1AT= BAWL * * .

ARRAY NAME** letter letter letter Iettet follow. d
by ma

letter letter letter

ARRAY snurcEIG" 1 1 0 0 0 0 1

ASSIGt4 ASSIGN (nave
nun, var, mask)

see OM ASSIGN DOOM to
nun

BACLSPACE

CALL -------- CALL name
(parameter List)

CHAIN CHAIN name
CHAIN name,
line 1

CHAIN namei am CHAIN name, CHAIN mare, n or,
CHAIN *name, n

or
MAIN: name, n

Or
CAIN: nano, n

CHAIN name
1 clears storage

1

CHAIN name;
password: num

**Contends *ad elements cbac can be used.
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IBM
CALL/560-05

PDP 8/E HONEYNELL
200

CDC 6000
MOWS
114,Sle 2,0

NCR
CENTURY

200

UCSD"
BASIC
B6700

IIP2000F

ACC=

ACCURACY*
15 DIGITS 7 DIGITS 10 DIGITS 14 DIGITS 7 DIGITS 11 DIGITS 6 to 7 DIGITS

AND -- -- AND

APPIOXIMMIX HZ141

ARRAY/WM*4d letter or S
ur 0 or 0

letter letter letter or
letter number

letter letter letter

ARRANSTAMING** 1 0 0 1 1 0 1

ASSIGN
-- .-- ASSIGN name,

aum, name,
mask

BACKSPACE BACKSPACE lexp

CALL CALL name
CALL name

num
numuser *

1

alAbl --- ...
CHAIN name
CHAIN name

num
nUm=user P

CHAIN name CHAIN name,
exp

.

UNIvERS1T2 OP CALIFORNIA, SAP NEW, 11111UMMIS 86700

**Commands *ad element* that can be used.
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NCR
CENTURY 100

BASIC 1

BURROUGHS
B5500
BASIC

BURROUGHS
82500
BASIC

BURROUGHS
33500
BASIC

BASIC FOUR
BUSINESS BASIC

UNICOMP
COMP 16 or
COMP IS BASIC

VARIAN
620 or V73

BASIC

AccEss

ACCURACY" 7 DIGITS 11 DIGITS S DIGITS 8 DIGITS 14 DIGITS 7 DIGITS N 7 DIGITS

AND .. . AND AND

APPROXIMATELY B.ML

ARRAY NAME" letter num name letter letter let ter letter letter

*PRAY STARTING" 0 I 1 I 0 0 1

ASSIV

.

BACKSPACE

-

CALL -- - - - - -- --- CALL name,
paraa, paraml,

...

CHAIN

A

RUN name ----- -.

i

"amends and elements that can be used.



1 !

IMI S3
HOD 6
BASIC

GE 233
TIME SHARING

BASIC

CCMSPARE

MAC
CCM-SPA/tE

Nnekiic
ISSINO.COSE

BASIC II
itiEST;IXICCSE

BASIC III
MEM griatitna4

ArmaD
BASIC -16

ACCESS

ACCURACY IS DIGITS 9 DIGITS 6 DIGITS
10 DIGITS

or
18 DIGITS

7-8 Eons 7-8 DIGITS 6 DIGITS

MI) MI) XST1 AND AND

APPROXDIATELY EQUAL t. I

ARRAY XAME letter, $, 8,
or

letter letter letter letter letter letter

AMY STARTING** 1 0 0 1 0 0 1

ASSIGN ALLOCATE
name

see FILES see OPEN see OPEN --------

BACKSPACE BACKSPACE i exp

CALL
OIL name, line
number operates
like CHAIN

--
CALL nave or
CALL EN Inter

or
CALL $ name

CAL! (num,
exp I, exp 2,
...)

CALL name
(elp 1, ev 2,
...)

CHAIN see CALL WAIN name
or

CHAIN name,
line .

SCRATCH
PROBED

Provides manual
chaining

LIM "Inane!"
LOAD "I nane:"

"*Commands and elements that can be used.



I. 1

UNIVAC I100

UMASIC

' FrIN DWELL 1640

XBASIC

.

ID4EYWIBI..
316, S16, and
716 BASIC

HPHEYWELL 400

iBASIC

IONEVICIRJ,600

BASIC

HP2000E UNIVAC 1100
UNIVOFI4ARYLAND
RELEASE V 1.3

ACCESS ..

.

--

ACCURACY** 8 DIGITS .06 DIGITS a. 6 DIGITS II DIGITS a. 8 DIGITS 6 to 7 DIGITS

.

8 DIGITS

AND AND(exp 1, exp 2) .. ...... AND ........

APPROXIMATELY EMAL

ARRAY NAME** letter letter letter letter letter letter letter

AMY DARTING** 0 0 0 0 1 1 0

ASSIGN ..... ... see FILES

BACKSPACE
-------- BAC7CSPACX 4 num

BACKSPACE num
BACKSPACE:nue

CALL CALL FUNC(exp 1,
... exp n)

CALL name CALL(Aum, exp 1,
... exp n)
Fortran or
Assembler Only

CALL name
or

CALL name
options

CALL name
or

CALL name,
password ,

CALL FlEIC
(exp 1, ...
exp n)

CHAIN CHAIN name,
Cum or
CHAIN: or
CHAIN* or
CHAIN:*

(

MINIM:
name options
RUN nay be any
RUN coniand

CHAIN name, num
CHAIN name
CHAIN name,
password,
num

CHAIN name -- - - - - --

"Commis and elements that can be used.



: %

MICRODATA

BASIC

Q-DATA

BASIC-1

HP3000 NANG 3300 MORAL

M

LECTRIC
ARK I

WANG 2200

ACCESS ----- ---

------.

ACCURACY** 9 DIGITS 6-7 DIGITS 6-7 DIGITS
11-12 DW8.E

PREC SION

8 DIGITS 9 DIGITS 13 DIGITS

VII A."0 ANT) (xp 1, ..
em n)

APPROXIMATELY OM --- ---

ARRAY MANE** letter letter letter or
letter digit

letter letter letter

- -
ARMY STARTING** 0 0 1 1 0 1

ASSIO . --- ASSIC. name,
ex, var, mask

SELECT options

BACKSPACE -------- ---- BACKSPACE A exp ---

CALL --- CALI. mare - - - - - - -- CALL we GOSUB' num
(var 1, ...
var n)

QIAIN ........ CHAIN name, exp CPAIN nave
CHAIN R name
CHAIN nun
CPAIN R nun

CPAIN name
MAIN name, nun

LOAD now
MAD nano, man

"Commands and elements that can be used.



BASIC 2.0
CDC 60
SCOPE

Ili4

CPS
UMW OF IOWA

DARDICUM DATAGEN7RAL 1 GE MARX II
' GE MARK III

MF/00013 IF1000C

CHANGE CHANainumlist
to string BIT
CHANCE string
to nu list

CHANGE nunlist
to string
CHANGE string
to numlist

---

CLOSE CLOSE FILE exp

1 1

CCOUN(FILE)

OCKIII(STORAGE) -- - CCM list CON list

CONCATENATION & $
.#, '"""'

acre. DATA val list DATA exp, ... DATA val list WIAval list DATA exp, ... DATA val list DATA val list

DATA FILE --

DEF** DEF FUNC
(vat.) = exp

one line

DATA FUNC
(var list) *
exp
one line

DEF FMNC
(vat. list)

one or atilt

DEE FUNC
(var) * exp
one line

DEE FUNC
(var list)
one or nult

DEE FUNC
(var) * exp
one line

DEF FUNC
(var) = exp
one line

DIM t (virtual stor)

DIMENSION** DIM nacre
(dimensions), ...
default 10

DIgnere
( dimensions), ...
default 10

DIM vane
(dimensions),...
default 10

DIM name
(dimensions), ...
default 10

DIM nacre

'..ensions), ...
default 10

DD.! name

(dinensions), ...
default 20

DIM mare
(dirensions), ...
default 10

END** END END CND END

I

END END END

EDFILE --

1

tee IF E0 l 1

1

see IF END see IF CM

*Commands and elements that tan be used.
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UK
rrF

LEASCO FVF 10 PDP 11

UNIVAC 1100
UEASIC VERSICN 2.0
MANKATO STATE CLG

NULTICCHP
OR

1211VMASS
BASIC(

XEROX

----

CHANGE -------- CONY CHANCE string to
ran
CHANGE num to
string

CHANGE num to
string
CHANGE string to
ntn

CHANCE numlist to
string
CHANGE string to
numlist

CHANGE numlist to
string
CHANGE string to
numlist

CHANGE string to
num
CHANGE num to
string

CLOSE CLOSE FILE
'name', ....

CLOSE list of
exp

CLOSE nuns ... CLOSE po name CLOSE: num

COMON(FILE) -- - - - - -- -- - - - - -- CChtON n --------

004HON(SIMAGE) --- . --------

CONCATENATION "4, CATS(strl, strl)

DATA** DATA val list DATA val list DATA val list DATA val list DATA val list DATA val list
DATA val:rep

DATA val list

DATA FILE --- -- DATAFILE*
u, name

--m

DEF** DEF PDC
(var list)exp
one line

DEF NNE
(var list)exp
one line

DEF FUNV
(var list) one
or cult line

DEF FliNt
(var list)

one line

DEF RING
(var list)
one or molt

DEF FUND
(var list). up
one line

DEF FUNC
(var list)exp
one line

DOI 1 (virtual stor) DIN i n
name (clans) -exp

DIMENSION ** Dim name
(dimensions), ...
default 10

DIM nose
(dimensions), ..
default 10

DIM name
(dimensions), ...
default 10

DIM name
(dimensions), ...
default 10

DIM name
(dimensions), ...
default 10

DIM name
(dimensions), ...
default 10

DIM name
(dimensions), ...
default 10

END** END END END END END END END

ENDFILE see ON ENDFILE n ENDFILE: exp,
line 1

**Commands and elements Oar can be used.



IBM
CALL/360-0S PDP 8/E

HONEYWELL
200

LTC 6000
)NOS
ma 2.0

NCR
CENTURY ,

ZOO I

1 UCSDa
BASIC
86700 HP20001:

MANGE ---

CLOSE CLOSE expl,...

CC00121(FILE) ---.--

00440(STCRAGE) COM varl,...

CONCATMATION -- &

DMA "" DATA val list DATA val list
no strings

DATA val list DATA val list DATA val list DATA val list DATA val list

DATA FILE

DEF" DEP PUNC
(var).exp
one line

DEF FUNC
(varl,...).exp

one lint

DEF PUNC
(verl,...)exp

one lint

I DEF FUNC
(var).exp
one line

DEF FUNC
(varl,...).exp

one lint

DEF FUNC
(var).exp
one line

DD48 (virtual story

DEHENSICV" DIM name
(dimensions),

default 10

DIM name
(dimensions),

4..

DIM name
(dimensions),

.44
default 10

i DIM name
1 (dimensions).

default 10

DIM name
(dimensions),

0..

DIM name
(dimensions),

.40
default 10

DIM name
(dimensions),

440
default 10

Eq)** END comment END END END END END END

EIWILE see IF END see NODATA see IF En see IF END

+01"EPSITT CF CALIFORNIA, SAN DIEGO, BURROUGHS MOO
0,commaads and assents that can be used.



ZS

I CENTURY 200
BASIC 2

AURROUGHS
B5500
BASIC

I BURROUGPS
B2500
BASIC

BURROUGHS
B3500
BASIC

BASIC FOUR

BUSINESS BASIC

UNICONF
COMP 16 or
COMP 1$ BASIC

VARIAN
620 or V73

BASIC

CHANGE

CLOSE -------- CLOSE (num)

CCSNON(FILE) - - -

caraqsromm

CONC.ATENATICe1 . - ------ -- ---- --

DATA** DATA val list
no strings

DATA val list DATA val list
no strings

DATA val list
no strings DATA val list DATA val list

DATA FILE

DU** DEF FUNC
(var).exp
one line

DEF FUNC(varl,...)exp
one line

DEF FUNC
(var) exp
one line

DEF FUNC
(var) exp
one line

DEF FUNC
(varl,...)exp

one line
DEF FUNC
(var) asp
one line

DIM (virtual story
I

DIMBSIONaa DIM var
(dimens ions) ,...
default 10

DIM var
(dimensions ) ,...
default 10

DIM var
(dimensions),

...
default 10

DIM var
(diwens ions) ,

default 10

DIM var
(d imams ions ) ,...

DIM var
(dimensions),''de fault 10

DIM var
(dimensions),

default 3$

ERR END END END END END END END

E4TiFILE

....

see READ 0
see WRITE r

i
*cmsands and elements that can be used.



IEM SS
MOD 6
BASIC

GE 255
TIMESHARING

BASIC

Coll-MARE

BASIC

1 ON-SHARE

NEMSIC
ICESTINGIOUSE

BASIC II

WESTINGIDUSE

BASIC III

GENTRAt
AUTCMTION
ADVANCED
BASK-16

CHANGE
CHANCE str TO
arrayarray var
awqm array TO
string var

I attsmE

:4 a
".

s
string Function

1

CLOSE CLOSE num or
str var, %..

CLOSE mut
CLOSE ouTpur

CLOSE exp

.

C04414 (PILE) .

Callag (STORAGE) -- - - - -- COM var, .

CONCX TENATION
LET SIR
(str var, num,
num) - str var

4.

DATA** DATA vai 1, val
2, ... val n

DATA val 1, val
2, ... val n

DATA val I, val
2, ... val n
no strings

DATA val 1, ...
val n

DATA val 1, val
2, ... val n
no strings

DATA val 1, val
2, ... val ri

DATA val 1, val
2, ... val n

DATA FILE - -- - - - - --

DEF" FLE4C(var).
mop

single line

DID: FUNC(Imir)
exp

single line

DEF FUNC(var).

single line

DEF FUNIC(var 1,

_.1....) exp or
DIE FIII(var 1,

rultiplo lino

DEF FUNt(var 1,

s'in);Iceline

DEP FUNC(var 1,
...) = exp

single line

DEF FUNt(var 1,

;1;111: exp

DIM 3 (virtual story .. --

DISC rar(mass),
... DISC var
(num, num)...

--- ---

DIMENSION" DIM var(nutt, num)

default 10

DIM var(num,
moi).

default 10

DIM var(num,
nuri), ...

default 10

DIM var(exp,
...), ...
default 10

DIM var(n, ...),

default n'10

DIM var(n, ...),

default n.10

DIM var(n, ...),

SD" SD comment or
ED

END END 1 Es41) END END MI

=FILE I see IF END 3 ;
1

I

V LW/LE
(0:0 line t I

i

----- .-.

"Corrands and ele2ents that can be used.
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UNIVX2100

UBASIC

/KNETWELL 1640

XBASIC

HMI-THEM
316, S16, and
716 BASIC

HC*Ellfill.400

XBASIC

HONEYWELL 600

BASIC

MOM MIVAC 1100
UNP/ OF 14UWIAND
RELEASEV 1.3

CHANGE CHANGE string
MD var
CHANGE var 10
string

CHANGE string
TO var
MANGE var 1O
String

CHANGE string
TO var
C14tWZvar1D
string

CHANGE string
TO var
CHANCE:v-2r TO
string

CLOSE CLOSE exp 1, ...
exp n

CLOSE: name: sec SCRATCH

MON (FILE) - ---

attrm (=RAGE/ -- - ----- ----- --- ON var 1, ...
var n

CONCATENATION CATS(str 1,
str 2)

DATA** - DATA val 1, ...,
val n

DATA val 1, ...,

val n
DATA val 1, ...,
val n
no strings

DATA val 1, ...,
val n

DATA val 1, ...,
val n

DATA val 2, ...,
val n

DATA val 1, ..,

val n

DATA FILE -- - - - - -- --- -- - - - - --

DEP* DEF FUNC(var),

t var n)erp
DEF FUNC(var 1,
...g var n)

DEFFUNC(var)0
exp

single line

DEF FUNC(var)
exp
single line

DEF TONC(var)
exp
single line

DEP FUNC(var)
cap or
DEF FUNC(var),

1 var n)

DEP FMC(var).
exp
single line

DEFFMC(var 1,
.iiimvma4 nvrraz

... 9 var n)

Dili t (virtual stor) DISC var(num,
nus)1 name

Dilie:SION"

Dili var(num,
mum 1, um 2,

nun 3), .., or
ARRAYS to specify
default

default 10

DIM var(r.wa,
rsirt), ...

default 10

DIM var(nun,

default 'AO

DIN var(Owa,

default 10

DIN var (mm,
sum), ...

default 10

DIM var(nwa,
nuns), ...

default 10

DIN var(num,
moa, ...

default 20

Ems"" END END EVD END END END EN)

ENDFILE Og MILE
exp GOTO line 4

see IF END ........ see IF END see IF END sec IF BM

"Commis and elements thtt can be used.



MICRODATA

BASIC

9-DATA

BASIC-1

HP3000 WANG 3300 GENERAL
ELECTRIC
MARK I

WANG 2200

CHANGE CONVERT num
TO string
CCNVOCT string
TO var

CLOSE FILEM $ num

CgMION (FILE)

03440N (STORAGE) CCM list CCM var 1, ...,
var n

Millar 1, ....
var n

COMATENOWN

DATA" DATA val 1,
val 2,... val n
no strings

DATA val 1.
val 2, ... val n
no strings

DATA val 1, ...
val n

DATA val 1, ...
val n

DATA val I. ...
val n

DATA val 1, ...
val n

DATA FILE

DEP* DEF FUNC (var 1,
Afar 2, ...
tar n) 0 exp
single line

DEP FUNC (var)
... exp

single line

DEE MAC (var 1,. var n) - exp
DEE FUNC (var 1,
... var n)

DEF FUNC (var)
. exp
sinlo line

DEF FUNC (var)
exp

single line

DEF FUNC (var)
m exp
single line

DPI 0 (virtual stor)
.

--- - - - - --

DDIEN5ION" DD4 var (dim,
dim), ...
default 10

DDi var (dim,
dim), ...
default 10

D14 var (dim.
din), ...
default 10

DIM var (dim,
dim), ...

DD4 var (dim,
din), ...
default 10

DIM var (din,
din), ...

MD" END EN) ENO LND END MI .

ENDFILE sec IF END see IF END

I

se': IF END

iti,Conrcuads and elements that can be used.



BASIC 2.0
CDC 6600
SCOPE

IBM
CPS

=V OF UNA
DAMIXTITI DATA GENERAL. GE MARK II

GE MARK III

HP2000/1

.

IT2000C

EWER ....... ENTER var, exp....ENTER
EWER I var.
exit, ...

var, exp,...
ENTER * var,
exp, ...

EQUAL"

*-

. . * . a or .EQ. . .

LQUIVALECE --"

IMIANGE

EXCLUSIVE OR

EXPONEVTIATION ** t or " ...

t f or ** t 4

FIELD

I

see IMM3E see USING I see USING see USING

FILE FILE 0 exp:
name

see OPEN FILE I num, nace
FILE: num, name

see FILES see FILES

FILE NAME MAX
installation
determined 8 char

6 characters not
including extensions 6 char 6 char

FILES

;

see FME see OPEN Files name, ... FILES name FILES name
i

FNENP PEND MIND -

FOR ** POR var a expl
TO exp2 STEP
exp3

FOR var a expl
TO exp2 STEP
exp3

FOR var a expl
TO exp2 STEP
exp3

FOR car . expl FOR var a expl
TO exp2 STEP TO exp2 STEP
exp3 exp3

FOR var - exp1 FOR var a expl
TO exp2 STEP TO exp2 STEP
exp3 exp3

GETPIR LCW(exp)

**Commands and elements that can be used.
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II4
rm

LEA POP 10 FOP 11
UNIVAC 1100 MULTICOMP

URASIC VERSION 2, 411

MEMO STATE CLG UNTV MASS
HAS I CX

XEROX

ENTER -- --

EQUAL * = * * ScU(expl, exp2) = *

KOWA/EWE mi ECU(expl. exp2)

MELANGE FILE exp EXCHAWB vl, 2

,vl = v2

-------- OPEN name to:
str, PRINT, ON

EXCLUSIVE OR FOR X0R(expI, exp2) --------

/WCNINTIATICH " f Or as t f or as f

..._

t or ** t 4 or as

FIELD see WAGE see PRINT USING see PRINT USING see PRINTUSING FIELD (sped,
spec2...spec n

see PRINT USING

FILE FILE. IN, str...

FILE: N, str...
see OM see OPEN see ASSIGN see OPEg

FILE MA/e)AX 3 Char 6 char 6 Char 12 char 7 char 11 char

FILES FILES name, ... PILES name, . see OPEN see OPEN see ASSIGN see OPEN

MEND MEM FNE1D FNEka

?DR" FOR var * evI
TO exp2 S1/33
exp3

POR var = expl
TO exp2 STEP
exp3

FOR var = expI
70 exp2 STEP
exp3
Myer = expl
TO exp3 BY exp3

FOR var * expl
10 e.xr2 STEP
exp.,

FOR var = expl
TO exp1 STEP
exp3

FOR var * expl
TO exp2 STEP
exp3

FOR var * expI
TO exp1 STEP
exp3

GETPTR num, varl.
var21 IR

**commands And elemelt that CAA be used.



IBM
CALL/360-0S POP 8/E

CDC 6000

HONEYWELL I KRONPS

200 BASIC 2.0

NCR
CENTURY
200

UCST,
BASIC
B6700 HP2000F

E/TER ENTER P varl,

ikiER earl,...

ECM. = = . = . =

KUIVALECE

!DERANGE

EXCLUSIVE OR

9CPCNEVTIATION6* t or ** t t OT A e or ** t 4 or *a t

FIELD see PRINT
USING

- - - - -- FMT or
sce PRINT

USING

see IMAGE

FILE FILE name,num
not collect see FILES see FILES sce FILES

FILE NAME MAX 8 characters letter or
letter num

7 characters 17 characters 6 characters

FILES see FILE FILES names,.. FILES names... FILES ame..

FNENT1 I I

FOR** R3R var*expl
ITO exp2 STEP

cw.P3

MR var*expl
T9 exp2 STEP

exp3

RNR var*expl
TO exp2 STEP

exp3

FM vay.expl
TO cxpl STEP

exp3

FCR var.expI
TO exp2

STEP exp3

FOP var*expl
TO exp 2
STEP exp3

FOR varbexpl
TO cxp 2
STEP exp3

cum r

i

. , 6 p aS
**commands and elements that can be used.



NCR BURROUGHS BURROUGHS BURROUGHS.
CENTURY 100 BSSOO 82500 83S00

BASIC I ' BASIC BASIC. BASIC

26

BASIC FOUR UNICOMP VARIAN

BUSINESS BASIC COMP 16 or COMP 620 or V73
18 BASIC BASIC

VIER

EQUAL**

EQUIVALE4CE

E02114:GE

- or NErl
Or +

EXCLUSIVE OR ........ ........ ........ ........ ........

OPMENTLUION" I.
* * *II * *

integer 4 -

FIELD see IMAGE ........

FILE see FILES see OPEN

FILE NAME MAX 6 characters 6 characters 6 characters
program files

only

FILES see OPEg

FOR" FOR var=exp 1
TO exp 2
STEP exp 3

FOR varserp 1
TO exp 2
STEP exp 3

GETFIR

" "Gormands and elements that can be used.

FOR VarseXp 1
TO exp 2
STEP exp 3

FOR VareXp 1
exp 2

STEP exp 3

FOR vareXp 1
TO eXp
STV ex

2
p 3

FOR VarseXp 1
TO exp 2
STEP exp 3

FOR varsexp 1
TO exp 2
STEP exp 3

KEY

3D

s
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2

UNIVAC 1100 H3NEYhTal. 1640 tomme..LL 115NMYWELL 400 tOMI11EA.600 HP2000E UNIVAC 1100

UBASIC XBASIC
316, S16, and

XBASIC BASIC
WV OF MARYLANZ

716 BASIC RELEASE V 1.3

ENTER -- -- . ........

EQUAL EQU (exp 1, . . EQ or * .
exp 2) or =

EQUIVALENCE EQV (exp 1, --

IV 2)
ED031ANGE var 1,

EXCHAME var 2 or var 1
. var 2

EXCLUSIVE OR XOR (exp 1, - -- - -- - ---

exp 2)
,

EXPONWIATION** t or A or . or * t t . or * t . or

-.0

FIELD se. PRINT USING P4T see IMAGE see IMAGE
specifications

,

FILE If num, name,
FILE see OPEN see FILES FILE I num, password see FILES -- --

mare FILE: num, nape,
password

I

FILE NME MAX 12 characters 6 characters 6 characters 12 characters 6 characters - --

FILLS name;
FILES see OPEN FILES name I, FILES name 1; password; ... FILES name, ... ------ --

... name n or
FILES options

MEND BIM --- INEZ FM,

POR var a exp 1 FOR var . exp 1 FOR var exp 1 FOR var . exp 1 FOR var . exp 1 FOR var . exp 1 PDRvar a exp 1
FOR** TO exp 2 TO exp 2 TO exp 2 TO exp 2 TO exp 2 TO exp 2 TO exp 2

STEP exp 3 STEP exp 3 or STEP exp 3 or STEP exp 3 STEP exp 3 STEP exp 3 STEP exp 3
FOR var exp 1, FOR var . exp 1, FOR var a exp 1
exp 2, exp 3 exp 2, exp 3 TO exp 2

8.:' 3b

GETPTR

1 1 L
**Comands and elements that can be used.
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MICSODAU Q-DATA IP1000 WANt 33O' GENERAL WAN
1

E 22C0 I

:271CBASIC BASIC-1
EI

I 1

MARI I
;

,

ENTER I var o

I

1 i
emit Exrde ritta 1, !

litarZ,anttn.3
1

1

nri 2, pun 3, van
!

1 I

EQUAL" . 6 . * * 0
/

/

1

EQUISaCE
i

-I

I

MCUISIVEOR - -- - - - - --
........ 1

1

4
.

. .

UPVEITIATION" or .

4

FIELD sec PRINT USING sec WAGE see MEL I see NAGE
;

FILE see FILES Sec FLFS See FILE$ see ASS7GN .

.

FILE 24.4tEilAX depends on 8 characters to characters 18 characters
installation

furs FILLS * nun FILL5 options FILES nare I; see ASSICN:
1

FILLS nary nore 2; ...
!

Re0 FNEND ....... "" ''''
I .

FOR" 'FOR van . F3R var exp 1 FOR van eop I FOR vo: exp 1 FOR var exp 3 nnR var . eAp 1 !

en 1 TO exp 2 TO exp 2 TO exp 2 IC erp 2 TO exp 2 TO ex7 2
STTP ovp Z STEP exp 5 S T E ' exp 3 srilp etn 3 V7ED cr.. 2 STEP exp 3

PEr.

"Commands and elements that can be u- :5,
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BASIC 2.0
CDC 6600
SCOPE

104
CPS

UNIV OF IOICK
DA.RTYCUTH LTA GENERAL GE HARK II

GE MRK IT/

KP2000B HP2000C

GOSUB** GOSUB line I GOSUB line I COSUB line I GOCOB line I COSUB line I GOSUB line I GOSUB line I

COSUB OF

(computed)

see ON see ON COSUB exp OF
nl, n2, ...

COSUB exp OF
ni, n2, ...

COTO" COTO Line I COTO nun
CO TO nun

CO TO line I 0310 Iine g CO TO nun COTO Iine N
CO T3 line I

GO TO rine I
00T0 exp line I

0010 OF
(C0cputed)

see ON 0)10 exp OF
nI, n2, ...

COTO exp OF
ni, n2, ...

GREATER** > > > > > or .GT. > >

GREATER EQUAL** > . or . > > . or . > > or > > > . or .GE. >. >

HOLD --- -----

IF** IF
THEN

ell epexp2
I

IF expl op exp24 IF ell:per

IF expl op
line

IF expexp2
IHEN line

expl opIgne
IF expl op exp2
CCSUB line I
IF expl op exp2
HIEN statement

IF expl oplt
IF excl:pgexp2

IF el:pexp2
I

.

IF ell epexp2
I

IF E N D I IF E N O I

exp THEN line I
IF EOF (num)
THEN line I

IF 0 4 D I e x p THEN

line I
IF END I exp:
THEN line I

IF E N V I e x p

THEN line I
IF END I exp
THEN line I

UWE I WHORE I exp
THEN line I

WHORE I exp
THEN line I
IF MORE I exp:
THEI line I

"Commands and elements that can be used.
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MI -

ITT

LEASO, POP 10 PDP Il
UNIVAC 1100

UBASIC VERSION 2,G
MANKATO STATE CLG

mumomp
OR

UNW mkss
alma

/OMR

COSEMP0* COSUB line 1 COWS Line g GOSUB Line g CCM line g COSUB line GOSIB line 1 Gams line 1

GOSUB OF
(computed) 0. Ii.:7 ...

COMP* GOTO line g OM) Line 1 GO TO Line g COTO line g GO TO line g
GO TOR nun

GO TO Time 1
GOTO exp, line I

GOTO Line 1

Garo OF
(computed)

GOTO exp
of Fine M, ...

(TIMER" ) ) ) ) GTR(expl, exp2) ) )

GREATER EQUAL** > > . ) GEQ(expl, exp2) . > or >

TOLD HOLD u

IF IF expl op exp2
/HEN line 1
IF expi op exp2
GOTO line 1

IF expl op IF expl

4421111a:plexp2

IF expl op exp2
11EN statement
y exIla:plexp2

explggn

IF'expl op exp2
11Th line i
IF :II Ar.lair exp2

IF excl:pexp2

IF expi op exp2
COMB line g

IF 110:piper

!Fell op exp2

IF expl op exp2

IFEND g IF END i exp
THEN line I

IF END firer 11Th
Line 1
IF END: var TION
line I

see ON

!FIORE/

1

*.Cocusods and eIecents that elm be used.



-.3

IBM
CALL/360-0S PDP 8/E

HONEYWELL
200

CDC 6000
MOWS
BASIC 2.0

NCR
CENTURY

200

UCSD°
BASIC
B6700 HP2000F

GOSUB" GOSUB lined GOSUB lined GOSUB lined GOSUB lined GOSUB lined
GOSUB lined
GO SUB lined GOSUB line 8

GOSUB OF

(computed)

GOSUB(linea.
... lined)exp

GOSUB exp OF
lined,...

ONO" COTO line* COTO lined GO 10 line* GO TO lined GO TO line*
GOTO lined

GO TO lined
GOTO lined

.

GO TO line*
COTO lined

GOIDOF
GOTO lined,...

line! ON
exp

GO TO(linea,
...lined) exp

c ONor sec
GOTO exp OF
line,.

GREAT .4 , , , , , , ,

GREATER EQUAL ) or ) ). > ). or e) ' or =, )* or =, ).

1010 -- ---

IF"
IF expl
op exp2

THEN lined

IF expi
op exp2

GOTO line O

IF expi
op exp2

THEN lines

IT expl
op exp2

GOTO line a

IF expi
op exp2

THEN line*

IF expl
op exp2

GO TO Ilha O

IF expi
op exp2

THEN line I

IF expi
op exp2

THEN lined

IF expl
op exp2

GO TO line 8

IF expl
op exp2

THEN lined

.

IF expi
op exp2

THEN lined

IFBali IF END I name
GO TO lined
IF END 0 name
THEN lined

see NODATA IF END I exp
THEN lined

IF END d exp
THEN lined

IF307dil

1

*UNIVERSITY OP CALIFORNIA, SAN DIEGO, SOFRO/GUS 86700
Cocm3ods and elements that can be used.
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NCR
CENTURY 100
BASIC 2

BURROUGHS
BSSOO
BASIC

BURROUGHS
82500
BAST(

BURROUGHS
83500
BASIC

BASIC POUR

BUSINESS BASIC

1 UNICOMP
COMP 16 or

COMP IS BASIC

VARIAN
620 or V73

BASIC

COSB" COSUB line 0 COSUB line I COSUB I.nel COSUB line, COMB line COSUB liner CORM line0

GOSS OF

(commuted)

..... .. COMB exit OF
line, GOMM
line,: param,

...

00100 CO TO line 0 CO TO line I. CO TO lIne 0 CO TO line 0 CO TO line 0 lGO TO line 8 CO.TO line 11

CUIDOP

(computed}

IGO TO exp OF
linel,... $

I

RWaER0a ? \GT or a a > a a a

GREATER MAL" , . or a a \GE or a. or
a, ora

>. am a or . a a. a*

H3LD

IF" IF exp op exp
THEN line 0

IF exp op exp
THEN line i

IF exp op exp
THEN line 0

IF exp op exp
THEN line i

IF exp op exp
statement

IF exp op exp
THEN line 0

IF exp op exp
THEN line i

'IF E N D 0 ... - -
o r

WRITE t

IF MORE t
..

"Ormands and elements that can be used.



IBM S3
101:0 6

BASIC

GE 2S5
TUEI SHARING

BASIC

COMSHARE

BASIC

CCWSHARE

=BASIC

WESTINGHOUSE

BASI C II

WESTINGHOLSE

BASIC III

GENERAL I

A UTCHATICLI
ADMAICED
BASIC-16

GOSUB** GO$UB line 0 GOSUB line 0
no recursioa

GOSUB line I GM115 line 41 COMB line 0 COSUB line 0 GOSUB line $

COWS OF

(computed)

- ON exp COSUB
line , ...

ON exp COSUB
brie C, ...

..... ...

G010** GO TO line $ G010 line 0 00To line 0 3010 line 0 6010 lire 1 GOTO line t GOTO line I

G O T O O F

(cooputed)

MID line 0.
... line *

ON exp

CN exp MID
Line 0, ...

ON exp ONO
line S. ...

ON exp 03TC
line I, ...

ON exp GOTO
line C. ...

ON exp GOR3
line JO,

°N o? GOTO
line I. ...

GREATER** ) ) ) ) ) ) )

GREATER ECCW* ) 0 >. >- >- ) .., or . ) ) . or . ) ) .

HOLD

IF** IF exp op exp
INE4 line I

IF exp op exp
GO TO line 0

IF exp op exp
/101 line I

IF exp op exp
THEN line I

IF exp op exp
COTO line I

IF exp op exp
GOSUlt line I

IF exo op exp
TIEN line I

IF exp op exp
0:110 line I

IF exp op exp
GOSUB line I

IF exo op exp
THEM statement

IF exp op exp
THEN line I

IF exp op exp
INE4 line I

IF exp op exp
TM/ Una 0

IF Op op exp
0)10 line I

IF END 0 IF MIDI exp
MEI line nun see ENDFILE

IFDIORE 0

I j

"Cccrands and elements that can be used.
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UNTVAC 1100

UWIC
itmlnow 1640

XBASIC

imMYWELL
316, $16, and

716 BASIC

itleihtLL 400

XEAS1C

HONEYWEll 600

BASIC

HP2000E mum 1100
UNIVOFMARYLAND

RELEASE It 1.3

COSA" COSOB line I GO SUB fine I CO SUB line P GOSUB line 4 03SU9 line ' COM line I GOSUB line 4

GO= OF
(eocputed)

- , GOSUB exp OF
line 4.

COTO" COTD line P
Or

GOTO num

GOTO line 4 0310 line 4 COTO line 0 GOTO line I GOTO line 0 COTO line P
COTO i num

GODS OF
(computed)

ON exp 7HD4 line
4, ...
ON exp 03TO line
4, ...

ON exp GOD)
line 1, ...

ON exp COTO
line 4, ...

ON exp COTO
line 1, ...

Ova COTO
line t. .
ON exp THEN
lino P, ...

GOTO exp OF
line 4,

ON exp 1l
line 4.
ON exp SOT*
line 4. ...

GREATS ** GT: (exp 1,
exp 2) or >

> > >
I

. or GT > >
1

GREATER EQ.1A1. GE(1(exp 1.

exp 2)or
> 0 or 0 >

> or > > Or > > Or > GE or
> or >

> > or >

HOLD

I

-

IF** IF exp op exp
THEN line I
IF exp op exp
GOTO line 4
IF exp op exp
THEN statement

IF exp op exp
MEN line 8

IF eV e:. exp
COTO line I
IF exp op exp
line I 1,
line 4 2,
line 13

IF exp op exp
THEN line 0

IF ex? op eV
COTO line 0
IF exp op exp
THEN statement
IF exp op exp
line g 1,

iJl

line ' 2,
line 4 3

IF exp op exp 'IF exp op exp
THEN line I fl line 4

IF exp op exp
COTO line I

IF exp op exp
THEN line 4

IF exp op exp
THEN line 4
IF exp op exp
COTO line 0

IF Ea 0 see ENDFILE IF END 0 exp
TP2N line P

,IF END 0 num
IF END P num. THEN line /
THEN line 1 IF : 0 num

COTO line S

!FEND+ exp
THEN line 4

IF MORE 4 ...... IF TORE 4 num, IF WEE 4 num,
TM line 0 1l line P

IF MORE 4 nun,
0310 fine 0

-.

*Cam:anis end elements that can be used
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MICROONTA

BASIC

10-DATA

BASIC-1.

P23000 WANG 3300 GEWAL
ELEC7RIC
MARK I

WANG 2200 1

COSUB" COMB line I COSUB line P COSUB line $ COSUB line $ COSUB line I GOSUB line 0

COMB OF

(computed)

-- - - - - -- GOSUB exp OF
line 0, ...

-

CARO" GOTO line $ 0310 line C GOTO line I GOO line $ 00 TO line 1 0310 line f

----.

COTO OF

(coeputed)

ON exp CO TO
line 0, .

--- GOTO exp OF
line 1, ...

on) line I, ...
line $ ON exp

W exp GOTO
line f, .,.

CREXTER EQUAL** > 2. OT > > > > >

HOLD -

IF"
IF

exp exp IF
e'xili::XP 1r

exp op exp
;r ex= :xi) IF exTili:

exp
IF

exp
TXP

IF END $ -- - - - -- IF END 1 exp
THEN line ,
ON END P exp
11Bi line I

IF END f num
THEN line I

IF Et $ exp
/HEN line $
IF END: exp
11B line I

IFMORE 0 .........
-- - - - ---

and elements chat can be used.

4G
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BASIC 2.0
CDC 6600
SCOPE

IER
fin

UN1V OF IOWA
OKKENOUIlf DATA mum. GENOA): II

GE NARIC III

HP2000 HP2000C

IF-THEN-ELSE --- -----

WAGE IMAGE see USING see USING see USING

IMPLICATION .

INpuT** INPUT varl. ... INPUT ARRAY
INPUT varl, ..

INTUt varl, ... INPUT varl, ... INPUT varl, ... INPUT varl, ... um 'dart, ...

INPUT FROM

INPUT LINE see INPUT

INPUT (- ) list

NM. INPUT 0 exp.
varl, var2, ...

INPUT FILE
leap) list

INPUT 0 exp, list
INPUT 0 exp: list

INPUT " ", van, ...

INTEMML NAME

KILL see SCRATCH not collect not collect

LARGESt
I**

E337 7.2 E7S 1.70141 E38 7.2 E7S 1.70141 E38 E38 E38

LESe I < < < < < or .LT. 4 <

L E S S WADI < * Or . < < a or * < < a or a< <_ 4 d Or LE. < <s

LET** LET varl * var2 fLET varl, ...
. ,.. = exp vary a orp Or
or no ur no La

LET varl = var2
. .. OXp

LEt var 0 exp

or no LET

I

LET 2r1 = var2
. var3 ... .. exp

LET varl * var2
= ... _exp
or no LET

LET varl var2

or no LET

**Commands and elements that can be used.
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184

IIF

LEASCO PDP 10 PDP 11

UNIVAC 1100
UBASIC VERSION 2,0
MANKATO STATE C2

tAILTI01
OR
MASS

EASICX

XEIOX

IF-IIIEN-ELSE IF statement op
statement
LIEN statement
ELSE statement

DIA% 124ItGE see PRINT USING see PRINT USING see PRINT USING see FIELD see PRINT USING

DTLICATICN DT DT(expI, exp2)

INPUT "" INPUT van. .. INPUT varl. ... IN UT vent, .,. INTUT varl, ... natrr van!, ... mwr varl, ... INPUT varl, ...

INPUT RCN .. MUT RCN num.
list

INPUT LINE INTUI LINE
string variable

INPUT ( ) list see INPUT FROM EOM (61, n)van. ...

INPUT # Ger nave, list rt.pur ci list
INPUT: N. list

MUT # exp,
earl, var2 ...

see DEW RCN INPUT: stn;
key, list

cour -. var, ... Darr "str",

var ..

VIEGER NAME metric mum
followed by t

..

KILL KILL name XIII string see SCRATCH

LARGEST I*" 7.2 E7S E38 1.7 E38 1 " E33 E38 £99 7.237 £7S

LESS*" < < < < LSS(expl, exp2) < <

LESS EqUAL" < < < ' < 15Q(exPit e392) < < " Or w <

LET "" LET varl, ...
v exp

LET varl . ...

var n - exp
LET earl . ...
v exp Or
no LET

LE' earl, var2.
... var n to exp
or no LET

LET veil var2
... exp

LET van!, var2.
. van n exp

on no Ler

LET varl, ... exp
or no LET

*Commands and elements that eat be used.



IBM
CALL/360-0S PDP 8/E

HONEYWELL
200

CDC 6000
KOKIS
mac 2.0

NCR
CENTURY

200

UCSD*
BASIC
86700 HP2000F

IF-fl EV-EISE

DOLCE set PRINT
USING

---1--
1

EAST
i IMAGE

IMPLICATION

natn4* INPUT earl,... 1INPUT varl,... INPUT var1,... INPUT van, INPUT varl,... INPUT varl,... INPUT varI,...

INS/TIM04

INPUT LINE

INPUT ( ) List see READ I see READ 0 see INPUT f see READ I

MIT f see READ f see READ I INPUT FILE
(name) varl,...

see READ 0

ImPur",,, vat', ... see READ I see READ I see INPUT t see READ 1

INPMBLNAME .. . . -

KILL
KILL-name
NIL-name

LARGEST 0** IE 7S lE 615 1 1E 616 1E 337 7.2 E 75 1E 47 1E 38

LESS** < < < < < < <

LESS BAIL** < or 4 <
t

< 0
I

< P < * or + < < * or 0 < < or < <

LET** LET vary...
var R * exp
or no LET

LET var exp LET vorlvar2
...var n exp
or no LET

LET vallvar2a
...vim n*exp
or no LET

LET varlexp LET var10...
War nexp

LET varl...
var nexp

AuvIVERsiTY OF CAL FORMAN, sA. DIEGO,
AN:teas:Ws and elements that can be used.



42

NCR
CENTURY 100
BASIC I

BURROUGHS
83300
BASIC

BURROUGHS
112300
BASIC

BURROUGHS
B3300
BASIC

BASIC FOUR

BUSINESS BASIC

UNICOMP

CM) 16 orCOMP 18 BASIC

g

VARIAN
620 or V73

BASIC

IF-1101-aSE

DOGE
i

TABLE

1

EeLICATION .. ...

i

1NFUT** INPUT varl,... INPUT varl,... INPUT rani, INPUT varl,... INPUT expl,... INPUT varl,... INPUT varl,...

HOW FRU4 ..

um LINE ...

INFUT ( ) list See INPUT f

gilitlname
INPUT*exp,
var list

see INPUT !

1K. UT
I% i,oxp, CHRAnuk

END=num)expl,
exn2, ...

LOUT!

1101T"", var, ... see INPUT I _.. See INPUT I - ---

INTEMMNAMB

,--

---

KILL -- .. -- . ERASE name . ---

LARGEST!** 1E 99 4.314E 68 1299 1E99 1E99 1.67E 73 1E99

LESS** 4 ALT or 4 4 4 < < 4

LESS EillU.** < e Or . < \LE Or < 00 Or
. < or s

<me <a < a or . 4 4. 4.

LET** LET var=exp LET varlxvar2*
...var n= exp

or no LET

LET var=exp Let var=exp
or no LET or no LET

LET varmexp LET var=exo LET varl=var2=
...var n = exp,

**Coxnands and elements that can be used.
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IBM S3
ralo 6

BASIC

GE 2SS
TINE SHARING

BASIC

CEN-SHARE

BASICBASIC

034-SRARE

NIATA&C

WESTINGOISE

BASIC IT

WESIlliftUSE

BASIC III

GEmERAL
AUDWATION
ADVANCED
BASIC-16

IF-MEN-ELSE -- - - - - --

IF exp op exp
11EN statement
ELSE statement

NAGE str or image -- - - - - -- see PRINT
USING

DVLICATION In)

INPUT" 'MUT var I, ... INDIACVar I, ... INPUT var I, ...
INPUT var I, ..
or DISPLAY
or ACCEPT

INPUT var I, . INPUT var 1, ...
Izmir var I, ...
or INPUT $ input
device S var I,
...

wur fRot INEur FROM
exp: var I, ..

-.

,

MUT LIN2 .

1

Dour ( ) List see INPUT FROM

MUT 1, INPUT FLLE
var I, ...

see MIRTT FROM

MUT " ", var, ... see INPUT t see INPUT FRO4

INTWER NAME nee name

KILL .

LARGEsr ilmo 1E99 S.711969E76 5E76 5E76 9.23E111 9.23E1B 9.23E1B

LESS*" < < < < < < <

BSI, "" <. <. <. < < or < < * or < <.

L E T "

LET var I, ...
yarn exp
or no LET

LET var * exp LET var lawar:*
... yarn asp
or no LET

LET var 1, ...
=exp Or LET var 1
4-var 2 ... + exp
or no LET

LET var 1 var 2
.., var R asp

or no LET

LET var 1 evar 2
... var n exp

or no LET

LET var 1 var 2
... var R exp

"Co:ronds and elements that can be used.



I 4

UNIVAC 1100

UBASIC

112NEtlIELL 1640

XBASIC

ICNEYwELL
316, 516, and

716 BASIC

HONEYWELL 400
.

XBASIC.

PLVEYWELL 600

BASIC

11P2000E UNIVAC 1100
UNIV OF WAYLAID

RELEASE V 1.3

IF-11EN-ELSE
!rev op exp
TIM statement
ELSE statement

DUDE see PRINT USING see FIELD ------- : format : forret

P4PLICATICN DIP(exp 1, exp 2)

MI:UT." INPUT var 1, ...
var Ti

INPUT var I, ...,
VOT n

INPUT var 1, ...,11011T
var n var

var 1, ...,
it

MIT var 1, ...,
Or it

INPUT var I, . ,
var it

nor var 1, ...,
var n

MUT MI INPUT FRO4 exp:
var I, ... var n

INPUT 1,1:2

noir ( ) list see INPUT 113:31 see INPUT see flour 1

INPUT see INPUT not
INPUT: name:
var I,
PAW 4 MD,
var 2. ...

Isivr # num,
list

INPUT " ,, var, sec.-MIT FRO4 see INPUT I see 'NWT 0 see INPUT P

INTECER ALMS

KILL KILL nara -

LARGEST to. 1E38 1E38 1E38 5.7396E76 1E38 1E38 1E3$

LESS LSS(exp I, exp 2)
Or %

< < < LT or < < <

LESS EQUAL"
LEQ(exp 1, exp 2)
or < a or . < < . or . < < a or . < < or . < LE or . a < a or . <

LET" LET var I . ...
var n m exp
or no LET

LEI' var exp
Or 110 LET

LET var 1, var 2,
... var n . exp
or no LET

LET var exp
or no LET

LET var 1 le var 2
... var n exp

or no LET

LET var I var 2
. ... var n exp
or no LET

LET var 1 . var 2
... var n . exp

or no LET

"'Co lands and elements that can be used.

SF



NRCROEKLA

BASIC

Q-DATA

BASIC-1

HP3000 'WANG 3300 GE &
ELECTRIC
NARK!

WANG 2200

IF-THEM-ELSE
IF exp op exp
THEN staterent
ELSE statexent

--

NAGE . IMAGE formats % formats : formats % formats

IMPLICATION --

INPUT** INPUT var 1,
... var n

INPUT var 1,
... var n

INPUT var 1,
... var n

INPUT var 1,
... var A

INPUT var I,
... var n

Deur var 1,
... var n

ever FRO4 ---

IN Ur LINE . .-. ..... ...

mur ( ) list .. ..... ... .

INPUT I .. ..... ...

Dear . ... var, ... -- -- - - - - --

INTEGER NAME . .... letter

KILL . ... .--

LARGEST rot 1E37 1E99 1E77 1E63 S.78960E76 IE100

LESS" 4 4 4 4 4

LESS EQUAL" 4 4 or 4 4 4

LET var 1, var ,

,.. VW' U exp
or no LET

<_

LET var exp

4

LET var 1, var 2,
... var n = exp
or no LET

tam*
LET var exp 'ET var = exp LET var 1 var 2

... var n exp
or no LET



BASIC 2.0
CDC 6600
SCOPE

IBM
CPS

ONIU OF IONA
OARIblYJIM -WA GIMAL GE MARX 11

GEMAJUC III

13;200013 1012000C

LINE Ia" 0 to 99999 1 to 999 1 to 99999 1 to 9999 1 to 99999 1 to 9999 1 to 9999

LIMIT - LINTUT N:
list of str var

LaxEsr =DIG a` 72 15 4095 256 119 72 72

MARGL1 MARGIN 0 N. exp MARGIN 0 exp, exp
MARGIN I N,
MARGIN exp: exp

Mn" MAT MAT MAT MAT MAT MAT MAT

MAXE424 MAX MAX

MAX ARRAY SIZE SOO elements 1024 elements 2500 elements 2500 elements

MAX NESTING MOP 10 f. 4 20 9 9

MAX I OF UM I/4 AN
ARRAY

3 2 2 2 2 2 2

MIMI
.

--------

-

-- - - - - -- NM MIN

MULTIPLE STATR4EYTS -- -- - -----

-

-- "

MAMAS ........ ........ ........ ...... -- - - - - --
-- ..

NEXT** NEC r var

L
NEXT var NEXT var MDT var NEXT var NEXT var NExT var

NOLATA NUM num
=WA PALL'(na)

-

1 1

Cocnan4A and elements that can be used.



IBM
17F

LEASW PD? 10 PAP 11

UNIVAC 1100
UBASICVEASION 2,0
MANKATO STATE=

MATICOMP
OR

UNPINASS
PASICX

XEROX

LIKE s** 1 to 99999 1 to 9999 1 to 99999 1 to 32767 1 to 99999 1 to 99999 1 to 99999

LINTUT

LONGESTSIRING" 18 198 char size of core sire of core S12 80 22

MGM MEOW exp

MT ** MT MAT MT MAT MAT MT MAT

MAXD4.84 MAX ----

MAX ARRAY SIZE

MAX NEsrais WOP 1S Depends on
storage

32 26

MAX OF DIM 1M AN
ARRAY

2 2 2 2 2 2 2

MIND414 MIN - --- -- - - - - -- ----

MULTIPLE srxraeas --- separated by : -. ---

MME AS NAME str
AS str protection

- - --

mar **

-

NEXT var NEXT vas Waver . NExr var NECrvar NEXT NECivar

NOONTA I .. -- -------- ----

.

-------- ---

**Commends sad elements that can be used.



IBM
CALL/360-0S POP 8/E

HON EYWELL
200

CD: 6000 '
MOOS
BASIC 2.0

I

NCR
CENTURY

200

I

UCSt r
BASIC
B6700 HP2000F

LINE 0" 1 to 99999 1 to 2046 1 to 99999 4 to 99999 1 to 9990 0 to 99999 1 to 9999

LINPU

LONGEST SIRING "" 18 char 63 char 72 char 14 char 15 char 72 char

MUM

mKTAE

-

MAT MAT MAT MAT

MAX11.114 MAX(varl,...) MAX

MA:(JMUZVISIZE 28,668 bytes core restricted-core restrictedcore restricted 4096 by 4096 4095 by 4095 4900 elements

MAXNESTINGICOP 15 8 10 10 10 no limit 9

MAK f OF DIM IN AN
ARRAY 2 2 3 3 2 , 2 2

MIE4B1 -- MIN(var1,...) - - - - -- m/N

MA/ IMUISTATEMENTS separated by \ - - - - --

NME AS

Nur" NEXT var NEXT var NEXT var NEXT var NEXT var NEXT var NEXT var

NO1lkt4
NODATA name
NODATA FILE
(none) :sun

see IF ENO

arNiviasiTY CF MUMMA, SAX DIEGO, BURROUCHS 36700
**Comrands and ascents that can be used.



50.

NCR
CENTURY 100

BASIC 1

BURROUGHS
BSSOO
BASIC

BURROUCHS
32500
BASIC

BURROUGHS
B3S00
BASIC

BASIC FOUR

BUSINESS BASEL

UNICOMP
COMP 16 or

COMP 18 BASIC

VARIAN
620 or V73

BASIC

1,01/4" 999999 99999999 9999 9999 I to 9999 1 to 9f.'99 1 to 9999999

LINIUT --

IAMST STRING" 1S characters
IS characters
(in PRINT)

IS characters
(in PRINT) :ore determined

MARGIN --

mxr" MAT MAT MAT MAT

MAXDO4 --

MAKARTUOrSI2E 1S12 elements 1023 by 1024 1000 eltments 1000 elements 999 elements ? 255 by 255

MAX 147.-STINV LOOP 10 core dependent S S S ? ?

MAX t OF DB1 IN ..M
ARRAY

2 2 2 2 3 2 3

MINIMA ----

14.11.TIPLE STATEMENTS --

.

NAME AS -- ...

MT "" NEXT var NEXT var NEXT var NEXT vat' NEXT var NEXT var NEXT vat*

MMATA ----- --

**Cormands and elements that can be used.



IBM S3
MOD 6
BASIC

GE 2SS
TIME SEARING

P.:SIC

CCM-SHARE

BASIC

CC 4 -SHARE

NEWEASIC

WESTINGHOUSE

BASIC II

leSTINGHOUSE

BASIC III
inOGEWALAvATION
ADVANCED
BASIC -I6

1.IN.S let 0 to 9999 1 to 99999 0 to 99999 1 to 99999 I to 9999 1 to 9999 1 to 9999

LINvtIr

trees,. SMOG" 18 characters IS characters core dependent core dependent 72 characters 72 characters

MARGIN

MAT** PAT MAT YAT MAT MT MAT

IGX17424 W.X(vur 1, ...)
is function

MAX ARRAY SIZE set by system
definition

2074 core dependen core dependent 32,767 32,767 core dependent

MAX :STEINS LOOP 9 26 core dependent core dependent no limit no limit core dependent

MAX t OF OM IN AN
ARRkY

2 2 2 limited by
states -ant length

limited by
line length .

limited by
line length

limited by
line length

MIN (var I, ...)
is functicn

-------- ---

NEILTIPLE STATEMOS
I

YES $ or or; -------- -----

MANE AS -------- ........ -- - - - - -- ----

MI" MT var IOU var
1.1ENT var or

.NEXT var NEXT line
or NWT var, ...

MeXT Val' I mcr vat tdCCT var

NODATA

1 1

... ...
I

--

"Comunds and elements that can be used.
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UNIVAC 1100

MUSIC

IONEYWELL 1640

XEASIC

HONEYWELL

316, 516, and
716 BASIC

N17.71118.1. 400

Xi Sic
fICIIPXAVIL 600

PAS1C

11'2000E =VAC 1100
UNIV OF MARYLAND

RELEASE V 1.3

LINE C 0 to 99999 1 to 32767 1 to 9999 1 to 99999 1 to 99999999 I to 9999 0 to 99999

LIMY -- - --- -- -- -- - ---

LONGEST SIRINVA 511 characters depends on core - 132 characters 132 characters 72 characters 60 characters

MARGIN -- ------- MARGIN 4 nun,
exp

MARGIN 4 nuta,
exp

mare MAT MAT MAT MAT MAT MAT

MAYOU4 144X (exp 1,
eap 2) Arnett=

-- - - - - -- -- - - - - -- MAX -- - - - - --

MAX ARRAY SIZE determined by
installation

depends on
available core

depends ol core
2000 elements
In core2200 on disc

depends on core
available

2000 elements depends on core

MAX NI:STING LOOP 32 8 depends on
installation

6 26 6 j
fl

32

MAX 4 OF DM IN AN
ARRAY

4 2 depends on
line length

depends on
line length

2 2 2

MINI1414 MIN (cc 1,
exp 2) function

MIN

MULTIPLE STAMM'S separated by separated by \ ---
NAME AS --------

NEXT a° NWT var Nom var MCI' var MT .var Ma var MT var NEXT var

MARTA

11Comands and elements that can be used.



MICRODATA

BASIC

1 Q-DATA

BASIC-1

1

IT3000 WANG 3300 GOMM.
&MCI=
MARX 1

,

NANO 2200

.

LUMP" 1 to 9999 1 to O99998 1 to 9999 1 to 9999 1 to 99999 1 to 9999

LIMIT - , LIMIT string
variable

LONGESF STRING" 255 characters 18 characters 15 characters 64 characters

MARGIN --------

MAT" MAT MAT MAT

MAXDA14 - KAX

MAX ARRAY SIZE depends on
core

1512 elements depends on core dimensions < 255 2074 elements dirensions < 255

MAX hIsritic LCOP depends on core 10 depends on core depends on core 26 depends on core

MAX t OP DE4 IMAM
ARRAY

2 2 2 2 2 2

MIND1114 KIN

MULTIPLE STATBENTS --- in LET statement
separated ty ,

separated by t separated by :

NAME AS -

i

---

Lerm NM var NMXT var ma var NEC var NWT var NUT var

M1DATA
.

...... ..

"Cetrunds and elements that can be used.



BASIC 2.0
CDC 6600
SCOPE

Ian(

CPS
UNN OF 'OKA

DARTMOTH LATA GENERAL GE NARK II

GE MARX III

PI)20008 HP2000C

NOT ...... ..

NOT Ewa** <> or ,..c
-

or .0. .0. .0. or .NE, .0. or # .0. or IP

NULMIC VARIABLE:NAME a letter or letter
digit

letter or letter
alphameric

letter or letter
digit

letter or letter
dig.t

letter or letter
digit

letter or lotto
digit

letter or letter
digit

ON ON exp GOT)
num, ...

ON exp GOT)
line 1, line 1

.

ON exp GOSS
line , line I

...

ON exp COTO
line 4, , -

ON exp MEV
lino 1, . ..

ON ev GWS
line 0, ...

ON exp ONO
line 1. ...

ON ERROR GOTO -- - -- - --

OPEN see READ or
WRITE PILE

'see PILE OPEN PILE
num, num, name

OPE-nare, num
OPE -nave, num

OPEN-name, num
OPE -name, num, it

OR

PAUSE

PLOT --------

min" PRINT list of exp PRINT list PRINT list of
exp

PRINT list of exp
or; list of exp

PRINT list PRINT list of
cup

PRINT list of exp

PRINT I see %RITE FILE PRINT 0 exp:
list of exp

PRINT FILE (cxpi
list of exp

PRINT P exp, list
PRIM'S cup: list

I

PRINT I exp:
list, END
PRINT 0 expX;
list, ENV

PRINT I expli
PRINT I exp: list.
END

PRINT I USING
PAINT exp:
USING str exp.
list

PRINT FILE icxp) 1,
DS'AS "string'. IgN6 ;t7iist
lut

4,0coTnanols and elements that can be used.



io

IBA
YIP

LEASCO PAP 10 PAP 11
maw 1100

UBASIC VERSION 2.0
MANKATO STATE CLG

MILTICOMP
OR

unv MASS
BASICX

XMOX

NOT NOT NOT NOT(exp) . --

NOT mmm." 0 0 0. 0. NE11(expl, exp2) <> <>. or ><

1424ERIC VARIABLE
`AMC **

letter or letter
digit

letter or letter
digit

letter or letter
digit

letter Or letter
digit

letter or letter
digit

letter or letter
digit

letter or letter
digit

ON

-----

GOTOvarI, ...
var n ON exp

ON exp COTO
line I,
ON exp MO
line 0, ...

ON exp GOlO
line I. line I

...

ON ex) COMB
line I. line R

...

ON =FILE
num COT) line I

ON exp GOTO
lino I, line I

...

ION exp COTO
line #. ...

ON ERROR COTO - ON IPROR GO TO --------

I

"-- -

OPEN; OM-name, num,
num

OPC4 name
INPUTFOR as
punur

OPEN name
SYMBOLIC INPUT
BINARY OUTPUT,nua

OM o. name, m °Paine= TO:
str, GET.T PILE

OR OR OR IOR(expl. exp2)

PAUSE PAUSE
I

PAUSE

PLOT - - -

1

PLOT expl
"exp2"

PRINT** PRINT list of exp PRINT list PRINT list PRINT list IPRUiT list of exp PRINT list of exp PRINT list

PRINT 0 see %RITE 0 PRINT 1 exp, exp;
list LID

PRINT I N, list
PRIM': N. list

PRIM' # exp, lis PRINT ON num: list see %RITE PRIM 'Num key.
list

PRINT . USING PRINT USING
string

I var, line 1,
list

PRINT R exp,
USINV str exp,
list

see %RITE

A*Cowands and elements that can be used.



-

IBM
CALL/360-0S

1

I POP 8/E
HONEYWELL

200

CDC 6000
IOW=
WIC 2.0

NCR
CENTURY

200

UCSO"
BASIC
B6700 HP2000F

.

NOT

-

NOT

NOT EQUAL" <> or f <> <> <> <> or >< <> Or >< <> or 4

OCRICURIA.WX MOM" letter .$,e,gor
letter,$.6,M

digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

CN - - - - -- ON exr
GOTO line' ...

lined,

ON exp
Go TO Una, ]GOTO

lines

ON exp
line ,...

ON exp
HEN lines,.

al ERROR WM

OM OPEN exp,var,
INPUT

OPEN exp,var,
OUTPUT '

-- OPEN-name,num,
1041

OPE-name,num,
AIM

OR OR

PAUSE PAUSE comment

PLOT --

I

-- ---- . ------

PRINT" PRINT list PRISE list PRINT list PRINT list PRINT list PRINT list PRINT list

PRINT s see WRITE , see WRITE 0 PRINT FILE ,

(name) list
PRINT 4 exr

1
list

PRINT # exp,
list

PRINT 4 USING

I i

1

1

*UNIVERSITY OF CALIFORNIA, SAN DIEGO, EURSOUGPS 86700
"Comnsnds *ad elements that can be used.

7C



NCR
CENTURY 100

BASIC 1

BURROUGHS
BES00
BASIC

BURROUG4S
B2S00
BASIC

BURROUGHS
53300
BASIC

BASIC FOUR

BUSINESS BASIC

UNICO4P
COMP 16 or
COMP 19 BASIC

VARIAN
620 or V73

BASIC

NOT NOT

WIT MUM." .o. ,NF or .v. or
>.c or i

.0, .0. <> or >< .0, 0.

KMER1C VARIABLE N.a.m " latter or
letter digit

letter or
letter digit

letter or
letter digit

letter er
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

ON ON exp COTO
line f....

ON ear GOTO
line ,...

--------

I

I

ON ERROR GUM ---- --
ON STATUS

GO TO line0,..,

OPDI -- OPEN (num)
name

OR OR OR

PAUSE WAIT exp

PLOT ----

o

-

PRINT "a

_

PRINT list PRINT list PRINT list PRINT list PRINT list PRINT list PRINT I ist

PRINT f PR/NT, exp,list
PRINT FILE
nem . Iist

PRINT (eras. INDeexii

IZPR.strI.EIDnroll
list

I

min mix --- see %%RITE *

USING
--

"Commas and elenents that can be used.



IBM S3
MOD 6
BASIC

GE 2SS
TIME SWING

BASIC

COM-SHARE

BASIC

COM-SHARE

=BASIC

WESTINGHOUSE

BASIC II

WESTINGHOUSE

BASIC III

GENERAL
AUTEMATION

IABUANCED
B.S4C-16 I

NOT NOT NOT NOT

NOT EQUAL** 4) or i 4) 4) 4) or it 4) or >4 or I <> or >4 or t 4)

NUMERIC VARIABLE NAME**
letter, e, t, S;
or a letter, f,
t, or S digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

ON ON exp GOT°
line I, ...

see GOTO OF ON exp GOTO
line 0, .
ON'exp GOSUB
line 0, ...

ON exp 00TO
line Po oo.

ON exp COTO
line *, ...

ON exp GOTO
line I, ...

ON ERROR COTO ON ERROR
GOTO line 0

OPEN -- - - - - --

OPEN 'name p

OUTPUT
OPEN !name',
INPUT

OPEN 'Mel,
options, exp

OR -------- OR OR OR OR

PAUSE PAUSE comment or
PAUSE or SUSIMM

PAUSE --- -----

PLOT

PRINT** PRINT list PRINT list I PRINT list
PRINT list or
DISPLAY or
maw, or TYPE

PRINT list PRINT list
PRINT list or
PRINT S output
device S list

PRINT I ste WRITE PRINT FILE,
var i. ...

PRINT ON exm.
list

PRINT I USING PRINT W FO5M
strexp: exp 1,
...

1 I

**Commands and elements that can be used.



1)0

UNIVAC 2200

UBASIC

teNEYWELL 1640

XMSIC

HENETWELL
316, S16, and

716 BASIC

11:6MMELL 400

XBASIC

HCNEHOILL 600

BASIC

HP2000E UNIVAC 1100
UNIVOFIWOHJINI)

RELEASE V 1.3

NOT N37(exp) I ------ --

NOT EQUAL**
hT4(exp 1, exp 2)
or 4> or >4 4> or >4 4> or >4 4> or >-: NT or 4> or >4 t or 4> 4> or t

NU4ERIC:VARLABLE NAME* letter or
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

ON ON exp GOO
line f,
ON exp THEN
line f, ...

ON exp GOTO
line 8, ...

ON exp GOTO
line f, ...

ON exp GOTO
line 8, ...

ON exp TIEN
line 41, .-.
ON exp COTO
line 0, ...

ON exp THEN
list g,
OWN exp OW
line F, ...

ON ERROR COTO ...

p .

-- - - - - --

OPEN _

OPEN nave FOR
options A FILE see FILES see FILES see FILES OPEN nave, nuns

OR 10Riexp 1, exp 2) ..e

.

OR

.

. --

PAUSE PAUSE or BRK

-----

Nor
I

....... .

PRINT,* PRINT list PRINT list PRINT list PRINT list man list PRINT list PRINT list

-

PRISM' f PRINT ON exp:
list

see hRITE ,

.

PRINT: nave:
list
PRINT , nun,
list

PRINT nut,
List

PRINT , exp;
list

.

PRINT 8 USINC see PRINT USING see WRITE 8 USING

I.

I

PRINT nun,
USING list

PRINT I num,
USING num,
list

**Cotmands and elements that can be used.



NRCROOKTA

BASIC

41-1i "alk

BASIC-1

HP1000 WING 3300 GMERAL
ELBCTRIG
MARK I

WANG 2200

NOR -- NOT -

NOT EQUL** 1 4> or /Pc I or 4> 4> <> 4>

N.FIERIC VARIABLE We* A letter or
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

letter or
letter digit

ON ON exp COTO
line 0, .

see 0)10 OF
see GOSUB OF

see GOTO OF ON exp GOTO
line $, .

ON ERROR COTO -

OPEN see ASSIGN see FILES see FILES see ASSIGN

OR OR OR (exp 1, ...
exp n)

PAUSE -- - - - - --

PLOT

PRINT" PRINT list PRINT list PRINT list PRINT list PRINT list PRINT list

PRINT I --- PRINT $ exp;
list
PRINT I exp,
exp 1; list

- - -

PRINT * USING

*Commands and elements that can be used..



BASIC 2.0
CDC 6600
SCOPE

1E4
CPS

UNTV OF IOWA
DARDEUTH DATAGENBIAL

I

GE NARK II

GE NARK III

11P200011 MOOG

PRINT USING PRINT USING In,
exp, ...

PRINT USING
string var, list,

PRINT USING
"string", list

PRINT USING
string tear, list
mairusiz
line f, list

PRINT USING
string exp; list

RANDOMIZE RANDOMIZE RANDOM RANDOMIZE
RANDOM
RAN

READ as READ varl., READ varl, ... READ varl, ... READ varl, ... READ varl, ... READ varl, ... READ varl, ...

READ FORWARD --
g

- - READ FORWARD
exp. list

-- ----

READ t READ FILE (name)
list

READ t exp:
varl, ...

READ FILE Iexp)
vari, .
READ FILE Iexp,
exp) varl, ...

READ f nuts, list
READ: num, list

READ $ exp; READ 1 exp; list
list READ f exp. exp;
READ P exp, exp; list
list

READ ( , ) see READ f see READ P see READ f

RELEASE --------

N--

REM " REM massage REM message REM message REM message REM message REM message RBI message

RESET see ammais RESET 0 exp:

exp
see REWIND see REWIND

RESTORE"
I

nn= RESTORE see RESET RESICRE RESTORE 0 exp
RESTORE
RESTORE: exp

t

RESTORE RESTORE
RESTORE line t RESTORE line t

RESUME -- --------
I

I

--

REMP44" RETURN RETURN RETURN
i

RETURN REI1JPX RETURN RETURN

eKommatuts and elements that can be used.



6!,

124
rrF

LEASCO PDP 10 PAP 11

,

UNIVAC 1100
UPASICVMSIONZ.0
MANKATO STATE CLG

ACIATDM4D
OR

UNIV MASS
BASICX

.

XEROX

_

PRINT USING PRINT USING
sum, list

PRIM' USING
ma, list

Riff USING
string exp. list
PRINT USTX'
num, list

Plain USING
string op, list

PRINT USING
fl, list

PRINTUSIKU
num, list

RANDOMIZE RANUM
RANTOM1ZE

RMONIZE RAN:MIZE RANDOMIZE

READ ** READ list READ varl, ... READ varl, ... READ varl, ... READ, varl, ... READ varl, ... READ varl, ...

READ 1,0100UU) -------- - ---- --

READ A READ A exp, exp;
list

READ A N, list
READ: N, list

see INPIT see READ ( ) GET: Lum; key,
list

READ ( , ) 'see WAIT
1

READ (60, n)
list

RELEASE see XIII RELEASE u

REM * REM message REK message REM message REM message REM message or I R9 or A message REM message or
message

RESET RESET name see RESTORE see RESTORE,
sErFra

RESTORE** RESTORE RESTORE
RESTORE line I

RESTORE list
RESTORE
RESTORE
RESTORES

RESTORE RESTORE
RESIORE*
RESTORES

RESTORE RESTORE
RESTORE line I

RESUME REM line I

RETURN** RETURN RETURN RETURN RETURN RETURN mum RETURN

**Commands end elements that can be vied,



IBM
CALL/360-0S PDP S/E

HONEYWELL
200

=6000
KRONOR
PASIC 2.0

NCR
CENTURY

200

UCSD*
BASIC
B6700 HP2000F

pRea USING PRINT USING
ine0,expl,...

PRINT,Iine0,
varl,...

PRINT USING
string;varl....

RANICIIIZE --- --- RANDOMIZE RANDOM
RANDOMIZE

READ" READ varl,... READ varI,... READ varl:... READ varl,... READ varl,... READ vast. READ varI,...

READ FORWARD

READ I
-

GET exp:
varl,... - - - - --

READ I exp,
veil,

READ FILE
(name)varl,...

READ I exp,
earl,...

READ I exp,
vent,

READ (
'

) . see READ I see READ I see READ I see READ I see READ I

RELEASE
--

Ree- REM message REM message REM message REM message
+REMARK

REM message
message

-REM message
REMARK message

REM message

RESET RESET
expl,... see REWIND

RESTORE FILE
(name)

RESTORE I map READ I mum,

RESTORE** RESTORE
comment

RESTORE RESTORE RESTORE RESTORE
RESTORE *
RESTORE $

RESTORE RESTORE
RESTORE rum

RESEkt

RETURN** RETURN
comment

RETURN RETURN 'RETURN RETURN RETURN RETURN

*UNIVERSITY OF CALIFORNIA, SAID DIEGO, IR:REDUCES B6700
**Commands and elements that can be used,



)t

NCR BURROUGHS BURROUGHS BURROUGHS BASIC FOUR UNICOMP VARIkM
CENTURY 100 BSSO0 B2S00 B3S00 BUSINESS BASIC COMP 16 or 620 or V73

BASIC I BASIC BASIC BASIC COMP 18 BASIC BASIC

PRINT USING --

Rmacpazs

READ** READ var1,...E READ earl,... READ varl, ... READ varl, ... READ earl,... READ %earl,

READMRWARD

READ (num,IND.
READS sec INPUT I exp,ERR -num,

ENDynum)
list
or

- EXTRACT

READ ( ) ........ see INPUT P sec read # --------

RELEASE % ERASE name

RDI** REM message REM message 4 message 4 message ! message REM message REM message
REM message REM message REM message

RESET
RESTORE

FILE name
RESTORE P exp

RESTORE ** RESTORE RESTORE RESTORE RESTORE ......... RESTORE

MAHE RESUME line '
__.

RETURN RETURN RETURN RETURN 1 1 RETURN RETURNRETURN

elements used.



tti
UM S3
/OD 6
BASIC

GE 255
TIME SHARING

BASIC

CCM-SHARE

BASIC

CCM7WARE

NEWPASIC

WESTINGPEOSE

BASIC II
WESTINOCUSE

BASIC /II
. .:AVON

AP/AICNC13)
BAS ,16

PRINT USIII3 PRINT USING
line q list -------- SET DIGITS

SET FORSAT
not really
foreatted prirt

PRINT DI
EOM str exp:
exp I, ...

RANTC14/ 2E

MAD** READ vas I, . READ var 1, ... READ var I, . . READ var 1, ... READ var I, ... READ vas I, ... READ var I, ...

READ P3RKIRD

READ ft GET name, vas,
vas I, ...

READ f exp,
var 1, vas 2, ...

READ FILE
var 1, ...

see INPUT PRO9

READ ( , ) see READ # see READ f see READ P see INTUT RCM

RELEASE see INPUT Mt

Ra** RUl comment RE! eocrent RB4 common: w
: comment

RE1 ccusent or
I coancr.t

RESI torrent RN cccrent RE4 torment

RESET Ran name, ..., see REWIN'D

RESTORE** RESTORE coment
os

RESTORE

R° RE RESTORE
RESTORE *
RESTORE 3

RESTORE RESTORE RESTORE pr. :ORE

RE9I1E RE.4.91IE or GO PROCEED AGMSI

REPAST** RETURN =rent
or

RETURN

REIM; REIM RETIEL1 REZURN RETURN RETURN

**Commands and elements that can be used.



UNIVAC 1100

UBAS1C

IONEVWELL 1640

XBASIC

WINSYNELL
316, S16, and

716 BASIC

MNTYWEI.I. 400

XbAS1C

IEMILL 600
BASIC

HP2000E UNIVAC 1100
UNIV OF MARYLAND

RELEASE V 1.3

PRINT USING PRINT ON exp
FORM

IN str:EWE
var I.

PRINT, nun, list -------- PRINT USING
num, list

PRINTUS1NG
nun, list

RANTCMI2E RAM:0412E ---

READ** R E A D var 1, . ,

var n
READ var 1, . ,

var n
READ var 1, ...,
var n

READ var 1, ...
var n

READ var 1, ...
var n

READ var 1, ...
var n

READ vat' 1, ..

var n

READ FORWARD READ 0 exp, exp

READ 0 see INPUT FRQM READ I exp,
var 1, var 2, . .

READ 1# nun,
var 1, ...

READ 0 num, list
READ: num. list

READ I exp;
var 1, ... var as

READ ( , ) see MUT FROM see READ ! see READ A see READ 0 see READ I ---

RELEASE -------- -------- ---- ---

RB4** REN comment may
follow statements
after special
character

REM comont or
* comment

RBI comment REM ccerent REM comment REM coo= REIM comment may
follow statements
after special
character

RESET' see REWIN, see REWIND READ 0 cep, 1 -----

RESTORE** RESTORE or
RESTORE ' or
RESTORE S

RESTORE RESTORE RESTORE
RESTORE *
RESTORE S I

RESTORE
MIME *
RESTORE S

RESTORE
RESTORE line 0

RESTORE
RESTORE A
RESTORE S

RESUME

I

----- --

RETURN,* IFtifilTai RETURN RETURN MUM I REIT.TeN I RETURN
I

REIM

**Con-ands and elements that tgn be used.



MICRODATA

BASIC

OL-EATA

BASIC-I

v23000 NANG'S300 / GENTLECTREC.RAL
E
MARK I

NANG 2200

PRINT USING

PRINT USING
num- list
PRINT USING
str var list
PRINT USING
str; list

PRINT USING
nun, list

PRINT USING
num, list

PRINT USING
rum, list

RANCOMIZE RANDOMIZE NANDON

READ** READ var 1, ..
var n

READ var 1,
var n

READ var 1, .
var n

READ var 1, ...
var a

READ var 1, ...
var n

READ var 11
var 'I

READ FORMA= ADVANCE I exp;
exp, var

READ I
READ I exp; var I
... var n
READ 0 exp, exp;
t -ar 1, ... , var VI

PILE READ $ nun,
var 1, ...,
var n

READ * exp,
var 2, .. VW n
REAM exp, var 1,
..., var n

DATALOAD

READ ( ) see READ I see READ I see READ 0

RELEASE

REM" Re4 comment REM cement RD comment REM comment REM ccerent REM content

RESET, see REWIN9

RESTORE** RESTORE RESTORE RESTORE
RESTORE ran

RESTORE
RESTORE num

RESTORE RESTORE
RESTORE num

MIME RE }E .

RETURN** RETURN RETURN rtErg
RETURN exp

RERAN REIM RETURN

"Commands and eiments that can be Used.



71

BASIC 2.0
CAC 6600
SCOPE

1/14

CPS
UNiV OF IC WA

DARD11:111 WACENIRAL

i

I GE NAP: II

I GE MARX III

102000B NP2000C

REWIND 'READ 1 exp, I READ P exp, ! I

SCRATCH SCRATCH 4 exp SCRATCH,/ exp
SCRATCH: exp

I

'

SETPTR SET.( exp 10 evp see RrAo P 'see READ f

SMILES? e* E-368 5.4 E-79 1.46937 E-39

6

5,4F-73 I 1.4e937 E-39 C-38 E-38

STOP"" STOP STOP STOP STOP 'STOP STOP STOP

SIRING QUOTES a" .

I

letter S

STRINGS

letter S letter S Menem
followed by S

I

letter S letter S letter SSTRING VARIABLE NAME"

SUB SUB name:
erg list

SUBEND" SUBEND

TINE TEMEn

UNLESS

=IL ----- ---

USER DEN= RINCTION
wles" a

RI letter EN letter EN letter FN tester FN letter FN Fetter FN letter

Anomnanda and elemeaes thee can be end.



12

IDI
11F

PUP 10 PUP 11
IINIVAC 1100

MASK VF.PSICV 2.c
MANKAID STATE CIA

81.11,TIOXP
OR

wry PASS
BASIC(

XEROX

REND8) - ROW num

=ATM SCRATCH 1iSZ see KILL. WRATCHnum

SEIM SET N, c4 ... SETriltnuma, our

WALL= 4" S.4 E-79 E-38 1.4 F-39 .14 E-38 E-39 E-99 $.30 E-79

STOP" STOP or STOP
message

STOP STOP SlOP STOP STOP STOP

SIR1N4 QUOTES" or ot to

STRIKGS -- - - - - -- . SHIMS nun
default 60

SFRIKG VARIABLE la all habetic i letter S 1Nnroric nizo i N neric name $ Volvric nane S NUmeric nate $ letter i

SUB -- ---

MEND
1

-

---
.

TINE .-...-.. ........

UNLES5 ----

---

UULLSS condition -

UNTIL

-------

UNTIL condit:on .

USER DEFINED FILNCTICN
NAM"

EN letter 1N letier FN letter IN followed b' I

vortahle

I

I

EN lotter
1

1

IN letter 1

1

0

EN letter
...... j

**Commando and eleoents that can be used.



IBM
CALL/360-0S PDP 8/E

HONEYKELL
200

CDC 6000
mems
BASI,:. 2.0

NCR
CENTURY

200

UCSD*
BASIC .

B6700 HP2000F

REWLNI) see RESET RESTORE S exp
I

see RESET see RESET see RESET

SCRATCH SCRATCH S cap

SETT%
I

SMALLEST A* 1E-78 1E-615 1E-616 1E-368 5.4E-79 1E- 4 7 1E-38

STOP" STOP zomment STOP STOP STOP STOP STOP STOP

SIRING oons" - or -- u u u u u

STRINGS
I

SIRING VARIABLE NAME" letter S Numeric name S letter S leumeric name S

I

Numeric name S

,

letter S

SUB

SUBEND

TLS

muss --

17H.
------

USER DEFINED FuNtrioN
MIES **

FN letter :N letter FN letter FN letter I

1

Pm letter FN letter

mAIIVERSITY Of CALIFORNIA, SAP DIEGO. SURROUCHS B6700
**Commands and elements that can be used.



74,

NCR
CENTURY 100

BASIC 1

BURROUGHS
BSSOO
BASIC

BURROUGHS
B2SOC
BASIC

BURROUGHS
B3S00
BASIC

BASIC FOUR.

BUSINESS BASIC

UN/COMP
COMP 16 or

COMP 18 BASIC

VARIAN
620 or V73

BASIC

REMIND
i

SCRATCH ERASE name

SUPIR REKEY

VALLEST e ** 1E-99

1

8.758E-47 1E-99 1E-99 1E-99 1.67E-57 1E-99

STOP ** STOP STOP STOP STOP STOP STOP

SIRING QUOTFS ** i. . . .. .. ..

STRINGS

SIRING VARIABLE NAME as letter S num name 3 ----

SUB

-

--- ........

SUBENI)
........

TIME i ] I I _1 1_
LESS

WITH.

USER DEFINED FUNCTION
NAMES aft

FN letter FN letter FN letter EN letter FN letter FN letter

ACorarsands and elements that can be used.
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1114 S3

MOD 6
BASIC

GE 2SS
TIME MARINI";

BASIC

Cal-SHARE

BASIC

COI-SHARE

NEWBASIC

WESTINGHOUSE

BASIC II

Ism:amuse
BASIC III

GENERA
RJTC6IATILV
ADVANCED
BASIC-16

REMIND see RESET RESTORE , exp -

SCRATCH smutlit exp SCRATCH

SETPTR

SMALLEST P"* 1 1E-99 S.78960E-76 SE-76 SE-76 2.71E-20 2.71E-20 2.71E-20

STOP** STOP coement
or STOP

STOP STOP STOP STOP STOP STOP

STRING QUOTES** " " " or , m m II

STRINGS - --

STRING VARIABLE UWE "
letter, S, I, or
It followed by S

letter S num name S num name $ - --- letter S letter S

SUB ---- ..
-- - - - - --

SUBND -- - - -- --

TIME TEME -- - -------- ---

UNLESS

myrit. UNTIL exp

USER DEFINED FUNCTION
NAII.S**

FN letter, S. e,
or #

FN letter I FN letter FN letter

I

1

FN letter

,

EN letter P letter

"Corrmnds and elements that can be used.
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lairOc 1100
misc

HDHEYWELL 1640

XEASIC

nom.
, 326, S26, and

716 BASIC

IrtnAifill.400

XBAS/C

HONEYWELL 600

BASIC

HP2000E UNIVAC 1100
unv OF MARYLAND

RELEASE V 2.3

REWIND RESTORE exp MIME num RESTORE UM
RESTORE: nw

SCRATCH smolt
:name:
SCRATCH num

SCRATCH 1 nun
SCRklai: nun

SETPTR -------- SET: num TO exp

SMALLEST I" 2E-39 1E-38 1E-38 S.7696E-76 1E -3B 1E-38 1E-34

STOP** STOP STOP STOP STOP STOP

STRING CE. TES** H 1. II 1* II

STRINGS STRING nun --------

STRING VARIABLE NAME** num Fume S letter S letter S tams mane S letter S letter S

SUB

SUMO

TIME

,

UNLESS

UNTIL UNTILconditIon .-- --------

USER DEFINED FUNCTION NAMES** FN letter FN letter FN letter FN letter

.

EN letter FN letter FN letter

**Commands and elements that can be used.
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)41COODATA

DSIC

Q -MTA

SkSIC-1

J 133OTO

.

WANG 3300 GENERAL
EiEC7RIC
MARX I

NANG 2200

REWIND RESTORE + exp
RESTORE: exp

SCRATCH PURGE mvie FIL240D+ exp,
option

__L

SCRATCH II exp
SCRATCH: exp

SETPTR ---- SET: exp, var

SMALLEST." 2E-37 1E-90 1E-77 1E -GS 4.31809E -78 1E-100

STOP ** STOP
ISTOP

STOP STOP STOP STOP STOP "comment"
STOP digit

STRING CSAJTES" f. 1 . , .$

STRINGS

STRIAGVARLARLE NOME"
.

letter $ or
letter digit $

letter $ letter $ num name $

SUB ..... ...
DEFP? num
(var 1, ... var TO

DEEM" (string)

MEND

TD4E

tiNIESS

UNIIL -- - - ----

USER DEEM FUNCTION
WES**

FN letter FN letter FN letter . FN letter FN letter F:: letter

**Coarands and elements that can be used.

No;



79

BASIC 2.0
MC 6600
SCOPE

!Si
CPS

UNA' OF NM
BARDS:UM BATA GEBIRAL GE MIRK II

GE MARK III

HP2000B IP2000C

WHILE -- - -- - --

MITE I WRITE FILE
(name) list

-- - - - - -- WRITE s exp: list kRITE FILE
Iexpl list

Or
tvrirrE FILE (ex,
expl list

WRITE C exp, list
WRITE: exp. list

see PRIM' a see PRINT

WRITE i USING WRITE a exp
USING str, list

WRITE ( , ) -- - - - - -- see WRITE a -- --. - -- -- - - - - -- ,see PRIM' i see PRIN' I
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IN4
I7F

LEA= PDP 10' porn UNIVAC 1100
MUSIC VERSION 2.0
MNANTO STAB CLG

PULTICOW
OR

um mAss
BAsicx

XEMX

I

WHILE WHILE corditicn

I

---

WRITE I PUT 'name'.
list

WRITE I N, list
WRITE: N, list

see PRINT WRITE Cantu:
list

see WRITE ( , ) PUT: nun.
key, list

WRI'T'E f USING ... ..... .......

WRITE ( . ) -- see PRINT WRITE (p, n)
list

..
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IBM
CALL/360-0S POP 41/E

HONEYWELL
200

CD:6000
KRONOS
BASIC 2.0

NCR
CENTURY

200

UCSD*
BASIC
B6700 HP2000F

WHILE - - - --

WRITE0 PUT exp:
varI,...

WRITE I exp,
varI,...

WRITE FILE
(name)expl,...

see PRINT 0 see PRINT I

MITE/USING - - - - -- - - - - --
-- --

- - - - --

MTh ( , )
I see WRITE I ------ see WRITE I see WRITE 0 see PRINT 0 see PRINT 0

UNIVERSITY OF CALIFORNIA, SAN DIEGO, BURROUGHS B6700



$2.

NCR
CENTURY 100

BASIC 1

BURROUGHS
OSSOO
BASIC

BURROUGHS
B2S00
BASIC

BURROUGHS
B3S00
BASIC

BASIC FOUR

BUSINESS BASIC

UN/COhP
COMP 16 or

COMP 1$ BASIC

VARIAN
620 or V73

BASIC

WHILE .._ - ........ ..

WRITE/ ...... -. see PRINT ,
.

.... WRITE (num,
IND.exp,ERR.
num,END.num)

list

-------- ---- I

W R 0/TE USING -------- ---- ---
wRITEUSING nu
(oss,IKT*exp,EPI.
run,ENCbnun)list

--------

WRITE ( , ) see PRINT I see :MUTE I

10b



di

IBM S3
MD 6
BASIC

GE 25S
TIME SMRING

BASIC

024-SHARJ-7

IV SIC

CCRI-SMRE

XEWIVISIC

wuriNstruSE
BASIC II

h'ESTINCIIIIISE

RABIC III

GLNTYAL
AUTCMTION

1

ADVANCED
BASIC-16

WHILE MULE 0)9

WRITE I ITT name, var 1,
var 2. 4.,

WRITE I exp,
var 1, var Z,
...

fee PRINT I see PRINT ROI ----- ---

leIlE I USING -----

MUTE ( . 3 see %RITE I see MITE it see PRINTS see pmur FROM

1 .
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UNIVAC 1100

MIMIC

HONEYWELL 1640

XIASIC

1ONEYWE1L
316. S16. and
716 BASIC

11CMCEil, 400

SIC C
miertu. 600

BASIC

HP1000E UNIVAC 1100
114IV OF MAXYLANZ
RELEASE': 1.3

WHILE WHILE condition

1 .

-- - - - - -- -- - - - - --

WRITE I WRITE ON exp:
list

WRITE 4 exp,
list

WRITE 4 mm,
list

WRITE 4 man,
list
WRITE: num, list

-- - - - - -- -- - - - - --

WRITE 4 USING see WRITE 4 WRITE 4 exp,
num, list

WRITE ( . ) see WRITE I see.WRIIE I see WRITE 4 -



NICIMATA

BASIC

q-clok

BASIC-I

VP1000 'NAND 3300 mote.
ELECTRIC
PARK I

KV4C 2200

WHILE

WRITE i see PRINT O FILERUTE
O nun, list

WRITE O exp,
var i, ... var n
'RITE : cap,
var 1, ... var n

DATASWE

WRITE USING

WRITE ( , ) see PRINT 0 see WRITE I see WRITE O see WRITE O



The following 4 tables are a list of the BASIC built-in functions where:

ABS: = Absolute value

ACS: = Ascii

ASN: = Arcsin

AIN: = Arctangent

BOOL: = Returns true value of relation

CLK: = Time of day

COL: = Next print position

COS: = Cosine

COT: = Cotangent

CSC: = Cosecant

CSF: = Returned statuscode

DAT: = Date

DEG: = Degrees from radians

DET: = Determinent

DIG: = Digital part from scientific notation

DIV: = Integer division

EOF: = End of file

EPT: = Exponent part

EXP: = Exponentiation

FIX: ge Truncation

FLD: = Selects bits

FRP: = Fractional part

GET: = Field data equivalent

RCS: = Hyperbolic cosine

HTN: = Hyperbolic tangent

INP: = Integer part

INS: = Converts to binary integer

INT: = Largest integer

KEY: - Next available position of file

86

LIN: = Skips lines

LOC: = Location of file pointer

LOF: = Length of file

LOG: = Natural logarithms

LOGIC): = Common logarithms

LTW: = Logarithm base 2

MAR: = Margin for file

MOD: = X - Y*INT(X/Y)

MXL: = Maximum length of string

NUM; = Number of data input

PI: = 3.1415927

FIX: = w times argument

POS: = Location of string

RAD: = Radians

REKEY: = Change position number of ripcord in file

RND: = Random number

RUN: = Elapsed time

SEC: = Secant

SGN: = Algebraic sign

SIN: = Sine

SPA: = Skips spaces

SPC: = Outputs a number of spaces

SQR: = Square root

TAB: = Tabulation

TAN: = Tangent

TIM: = Elapsed time

TIS: = Time of day in milliseconds

TY?: = Type of file

XPT: = Exponent part
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The following table refers to matrix operations and built-in functions where:

CON: = Matrix of a:- ones

IDN: ... Identity matrix

IAN: = Inverse

NUL$: = Matrix of null strings

TRN: = Transpose

ZER: = Zero matrix
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The next table shows various string built-in functions. These functions

are sometimes quite complicated and their descriptions should be

referenced in the appropriate manual.
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COM-SHARE NEWBASIC extensions

1. LET VAR = ZERO- -zeros all variables.

2. Statements may contain up to 256 characters.

3. Complex variables

4. Data type declares -- INTEGER, DOUBLE INTEGER, COMPLEX, REAL, DOUBLE REAL, STRING, TEXT

5. Very much less than <<

6. Very much greater than >>

7. Binary operators--BAN conjunction, BOR disjunction, BEX exclusive or

8. Logial operation - -BUT

9. Allows mixed data types and converts.

10. Comments may be added after any statement.

11. Suffix modifiers may be added after any non declarative statement.

12. Keywords may be abbreviated.

13. LET var = exp 1 = exp 2

14. NORMAL MODE IS

15. DIM var (exp: exp) as in ALGOL

16. LINK saves variables, LOAD does not. Cr)

17. May LINK or LOAD BINARY

18. APPEND in execute mode

19. FOR var = exp 1, exp 2, ...

FOR ... UNTIL or WHILE

20. May use brackets [

21. ON ESCAPE GOTO line #

22. ERASE exp FROM exp TO exp deletes material on random file

23. Formatted input--INPUT IN FORM, INPUT IN FORM FROM

24. Setting BASE

25. Suffix modifiers FOR, IF, UNLESS, UNTIL, WHILE



98

26. String functions: IMIVsearches for substrings

CTI--character to integer

ITC -- integer to character

SPACE--returns spaces

L/TR/M--removes leading blanks

TRIM--removes trailing blanks

INDEX--returns position of substring

27. Functions: D/F--positive difference

FLOAT--floating point of integer

SNGL-- single precision from double

LSH--left shift

RSH--right shift

MAOimaginary part of complex number
- .44

REAL--real part of complex number

COMPLXcomplex number

CONJOconjugate

WAIThalts for time

PASS--number of times statement is executed

REPASSresets PASS

DATE--12 character date

TEL--tells if terminal buffer empty

SIZE -- length of file in words

28. Catalyst functions
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Extensions of HP3000 BASIC

1. Continuation of statements by placing & as last character

2. Double precision variables

3. Complex variables

4. Integer variables

5. TYPE statements INTEGER COMPLEX LONG REAL

6. Redimensioning by REDIM

7. IF DO and DOEND pairs

8. For loops in READ statements

9. May save extra INPUT's in a buffer and EUF function

10. Complex functions CEI, CPX, REA, 'MG, CNJ

11. String functions WRD, UPS, DEB

12. Matrix functions ROW, COL

13. Functions UND, CPU, REC

14. May define type functions

15. Call external procedure in other libraries by EXT

36. CPDATE allows file to be modified.
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THE CADA MONITOR

David E. Chriat

The University of Iowa

Several elements go into a Bayesian statistical analysis. Some are

skilled tasks requiring the expertise of a professional and others are

purely mechanical. The former include such tasks as choice of model,

specification of the prior, and interpretation of the posterior distri-

bution; whereas the latter include such things as the arithmetic necessary

to take statements about the prior and combine them with the data to

produce the posterior distribution and to produce probability statements

about parameters using the posterior distribution. Unfortunately, it is

all too often the case that the arithmetic gets in the way of the pro-

fessional's decision-making task by breaking concentration and line of

thought; and at times the sheer bulk of computation precludes the use of

advanced techniques by the unaided researcher. For these and other reasons,

a system of Computer-Assisted Data Analysis (Novick, 1971) was developed

at The University of Iowa. FUrther investigation into available computer

technology coupled with expansion of the theoretical base on which the

original system rested has resulted in the refinement and expansion of

the available programs and the construction of a monitor to facilitate

their use.

Since CADA (Computer-Assisted Data Analysis) was meant as a research

tool for general application, a search was made to find the most effective

means of facilitating wide distribution of the monitor for use on many

computing systems. Due to limitations in time, manpower, and money,

reprogramming on a system-by-system basis was rejected as a viable

method of implementing CADA. Since no entirely transportable language
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for all interactive systems existed, it was decided to pursue a strategy

which would permit interdialect translation rather than actual repro-

gramming. Examination of available hardware and software pointed

toward the BASIC programming language as the only possibility for

translatability across several manufacturers. A study was then made

by Isaacs (1972) which showed that programs written in one dialect of

BASIC could easily be translated into that of many other manufacturers'

dialects provided certain specified constraints on the initial programs

were observed. The first BASIC version of CADA was then written by

Isaacs and Christ in the BASICX dialect for the CDC 3600 at The University

of Massachusetts. This was then easily and quickly translated into

versions for the Hewlett-Packard 2000C and the Digital Equipment

Corporation PDP -ll, thus validating the assertions made by Isaacs.

The detailed outline of the current monitor was developed based on

considerations falling in three basic areas--user interaction, systems

constraints, and programming considerations. The user interaction is

by far the most important consideration. Although the user may be

highly skilled in his own subject area, he may be quite unsophisticated

in terms of computer skills. The first design rule was then that the

user be required to have no programming skills. He need know only three

system-related commands: (1) how to sign on the system; (2) how to

start the monitor running; and (3) how to sign off the system.

The second design rule was that the monitor be self-documenting

in terms of options available. The monitor should be modifiable to

include new models, new techniques, and improvements to current programs

without the user having to wonder whether he has the Patest "newsletter"

or update sheet.
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The third design rule was that the user should not be left

"hanging". If a numerical integration fails to converge, an error

message followed by the stopping of the program is not enough. Control

must branch to a point where the unsophisticated user can proceed on the

information available to him. Furthermore, whenever possible, input from

the user must be checked for validity to avoid system errors such as

division by zero, taking the root of a negative number, etc.

The constraints of any language implementation limit what can be

programmed in that language. When programming for translatability across

several* systems, the constraints become somewhat more demanding and at

times preclude the use of features that may be present on one system

only, or that differ radically from one system to the next. This, with

the three design rules mentioned above, has governed most of the design

of the monitor and the programs.

While the monitor is currently available for operation on only

three systems, an attempt has been made to minimize the dependence on

features not available in BASIC dialects for other computers. The two

features used which might be the most limiting are chaining and formatted

print statements. However, the systems in which we are most interested

have these features available. The formatted print statements were used

to present the output and textual material in a visually pleasing way.

This is not necessary, per se, but is desirable to facilitate the man-

machine interaction since the intended user is not presumed to be a

computer expert. The formatted print statements do have analogs in the

other dialects we propose to use; however, they will be the ones needing

the most change from machine to machine.
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Chaining, which is necessary in some larger machines and most

smaller machines, is much more central to the logical design of the

system. The first consideration was that the user need only know

how to sign on the system and would not need to know the names of the

individual routines. This implies either a main routine-subroutine

system or a monitor program which causes the loading of the propei program.

The latter is the system used by us, dictated by the design of most

BASIC systems. The main routine-subroutine system has the advantage of

ease of parameter passing. However, the number of parameters to be passed

in our system is few and the values are values known to the user, usually

understood by him, and normally recorded, to be used in any published

record of the analysis; thus, it is reasonable to ask the user to reenter

the parameters when necessary. This also allows the user to easily do

an analysis in steps at different times. The chaining as used here has

the advantage of having in core only the program in use and thus reducing

system overhead. A second consideration for the system is that it should

be impandable with little effort on the part of the programmer and with no

operational change visible to the user. The monitor system used here

permits this. The only change seen by the user is that he is given the

choice of choosing among a larger set of routines and techniques. The

programmer need add only about three lines of coding to the monitor to

make a new routine available to the user. A third consideration is that

the user should never be left dangling after he makes an error. In the

CADA monitor, when a program fails, the system chains to a routine in

which the user is told to save the output for use by the person waintaining

the system and is then returned to the monitor to continue the session if

he 80 wishes. All user input is screened for validity. Since string
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handling capability is not highly developed in all BASIC dialects and

handling a finite set of responses can be done by much simpler coding,

user responses to questions within the program segments have been forced to

numeric form.

Programming ease was also considered. A modular method was used

in building the routines themselves. Many routines were common across

programs (e.g., integrating a beta distribution, calculating an inverse

chi highest density region) and were assigned specific line numbers above

5000. These routines were coded only once and after being debugged were

usable without further effort on the part of the programmer. The programmer

then referenced these routines by GOSUB statements to predetermined line

numbers with no need to worry about where to put them. Unique portions

of programs were then programmed with line numbers below 2000. As noted

above, the monitor system used enables new programs to be added with little

programming effort.

The accompanying appendices show a sample of the monitor output,

give a listing of the current package contents, and outline the chaining

sequence.
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RUN C3CADA

APPENDIX I

Monitor Output

COMPUTER ASSISTED DATA ANALYSIS

IF YOU WISH AN EXPLANATION TYPE 1, ELSE TYPE 3
1

THIS PACKET OF PROGRAMS PROVIDES A GROUNDING IN THE
FUNDAMENTALS OF BAYESIAN METHODS OF STATISTICAL INFERENCE.
THESE .OUT IVES ARE DESIGNED TO GUIDE TEE RESEARCHER WED VAS
ONLY A MINIMAL ACqUAINTENCE WITH BAYESIAN METHODS, STEP-3Y-
STEP T.HROUGH A COMPLETE BAYESIAN ANALYSIS. A LIST OF THE
ROUTINES FOLLOS:

1. PRIOR BETA-BINOMIAL MODEL
2. POSTERIOR BETA-BINOMIAL MODEL
3 PRIOR TWO PARAMETER NORMALMARGINAL DIST FOR STANDARD Di.V
4 PRIOR TWO PARAMETER NO DIST FOR MEAN
S. POSTERIOR TWO PARAMETER NORMAL
6. PRIOR M-GROUP PROPORTIONS
7. POSTERIOR M-GROUP PROPORTIONS
e. EVALUATE STUDENT-DISTRIBUTION
9. EVALUATE BETA-DISTRIBUTION
11. EVALUATE INVERSE CHI-DISTRIBUTION
11. EVALUATE NORMAL DISTRIBUTION
14. CALCULATE MEANS,STANDARD DEV., SUMS OF SqUARES

IF YOU WANT TO RUN ONE OF THE ABOVE. ROUT INES,TYPE ITS NUNBER
OTHERWISE TYPE A ZERO.

1
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APPENDIX II

Package Contents

I. Supervisory Routines

A. CADA - Monitor

B. ERROR - Gives instructions when a program fails

II. BETA - Binomial Model Routines

A. PRIORB - Assists in fitting prior knowledge to the beta class

B. POSTB - Combines a beta class prior with binary data to give

a beta posterior

III. Two Parameter Normal Model

A. PRIORS - Fits prior knowledge (marginal) on the standard

deviation to an inverse chi distribution

B. PRIORM - Fits prior knowledge (conditional) on the maan to a

normal distribution

C. POSTN - Combines the inverse chi and normal priors w.tth normal

data to give posterior distribution

IV. m-Group Proportions

A. PRIORP - Evaluates exchangeable prior information on any of a

set of proportions for use in an m-group proportion routine

B. PROPOR - Solves the Lindley equations for a set oC binary data

V. Evaluation Routines

A. TDIST - Evaluates the probability integral of a nonstandard

student t-distribution

B. BDIST Evaluates the probability integral of a beta distribution
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C. ICDIST - Evaluates the probability integral of a nonstandard

inverse chi distribution

D. NDIST - Evaluates the probability integral of a nonstandard

normal distribution

VI. Service routine STAT calculates the mean, standard deviation, and

sum of squared deviations from the mean for a set of data
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Error may be naiad
from any module upon
detaction of an'

error or abnormal
condition.

APPENDIX III

Chaining Sequence

ERF.71t

Note: Any program can chain to error upon detection of an abnormal condition.
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